坡度坡向分析方法
為科爾沁左翼等地區(qū)用戶提供了全套網頁設計制作服務,及科爾沁左翼網站建設行業(yè)解決方案。主營業(yè)務為做網站、網站制作、科爾沁左翼網站設計,以傳統(tǒng)方式定制建設網站,并提供域名空間備案等一條龍服務,秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務。我們深信只要達到每一位用戶的要求,就會得到認可,從而選擇與我們長期合作。這樣,我們也可以走得更遠!
坡度(slope)是地面特定區(qū)域高度變化比率的量度。坡度的表示方法有百分比法、度數(shù)法、密位法和分數(shù)法四種,其中以百分比法和度數(shù)法較為常用。本文計算的為坡度百分比數(shù)據(jù)。如當角度為45度(弧度為π/4)時,高程增量等于水平增量,高程增量百分比為100%。
坡向(aspect)是指地形坡面的朝向。坡向用于識別出從每個像元到其相鄰像元方向上值的變化率最大的下坡方向。坡向可以被視為坡度方向。坡向是一個角度,將按照順時針方向進行測量,角度范圍介于 0(正東)到 360(仍是正東)之間,即完整的圓。不具有下坡方向的平坦區(qū)域將賦值為-1(arcgis處理時為-1,其他可能為0)。
坡度、坡向計算一般采用擬合曲面法。擬合曲面一般采用二次曲面,即3×3的窗口,如下圖所示。每個窗口的中心為一個高程點。圖中的中心點e坡度和坡向計算過程如下。
參考鏈接:
[1]https://blog.csdn.net/zhouxuguang236/article/details/
[2]https://blog.csdn.net/weixin_/article/details/
[3]https://www.cnblogs.com/gispathfinder/p/.html
注意:DEM的空間坐標系一定要為投影坐標系。
ArcGIS坡度坡向分析
打開DEM數(shù)據(jù)
坡度分析
坡度結果
坡向分析
坡向結果
python-gdal坡度坡向分析
from osgeo import gdal
demfile = r"D:\微信公眾號\坡度坡向\N40E117_Albers.tif"
# 獲取DEM信息
infoDEM = gdal.Info(demfile)
# 計算坡度
slopfile = r"D:\微信公眾號\坡度坡向\N40E117_Albers_gdal_Slope.tif"
slope = gdal.DEMProcessing(slopfile, demfile, "slope", format='GTiff', slopeFormat="percent", zeroForFlat=1, computeEdges=True)
# 計算坡向
aspectfile = r"D:\微信公眾號\坡度坡向\N40E117_Albers_gdal_Aspect.tif"
b = gdal.DEMProcessing(aspectfile, demfile, "aspect", format='GTiff', trigonometric=0, zeroForFlat=1, computeEdges=True)
坡度結果
坡向結果
python坡度坡向分析
import gdal
import numpy as np
from scipy import ndimage as nd
from copy import deepcopy
demfile = r"D:\微信公眾號\坡度坡向\N40E117_Albers.tif"
slopefile = r"D:\微信公眾號\坡度坡向\N40E117_Albers_python_Slope.tif"
#讀取DEM數(shù)據(jù)
ds = gdal.Open(demfile)
cols = ds.RasterXSize
rows = ds.RasterYSize
geo = ds.GetGeoTransform()
proj = ds.GetProjection()
dem_data = ds.ReadAsArray()
data = deepcopy(dem_data).astype(np.float32)
band = ds.GetRasterBand(1)
nodata = band.GetNoDataValue()
data[data == nodata] = np.nan
# data[data<-999]=np.nan
mask = np.isnan(data)
# 將無效值或背景值臨近像元填充
if np.sum(mask) > 0:
ind = nd.distance_transform_edt(mask, return_distances=False, return_indices=True)
data = data[tuple(ind)]
# 計算坡度
xsize = np.abs(geo[1])
ysize = np.abs(geo[5])
x = ((data[:-2, 2:] - data[:-2, :-2]) + 2 * (data[1:-1, 2:] - data[1:-1, :-2]) + (data[2:, 2:] - data[2:, :-2])) / (8 * xsize)
y = ((data[2:, :-2] - data[:-2, :-2]) + 2 * (data[2:, 1:-1] - data[:-2, 1:-1]) + (data[2:, 2:] - data[:-2, 2:])) / (8 * ysize)
s_data = np.full((rows, cols), -999, dtype=np.float32)
s_data[1:-1, 1:-1] = (np.arctan(np.sqrt((np.power(x, 2) + np.power(y, 2)))))
s_data[1:-1, 1:-1] = np.abs(np.tan(s_data[1:-1, 1:-1])) * 100
s_mask = s_data==-999
# 邊緣填充
if np.sum(s_mask) > 0:
ind = nd.distance_transform_edt(s_mask, return_distances=False, return_indices=True)
s_data = s_data[tuple(ind)]
# 掩膜
s_data[dem_data==nodata] = -999
# 寫出結果
driver = gdal.GetDriverByName("gtiff")
outds = driver.Create(slopefile, cols, rows, 1, gdal.GDT_Float32)
outds.SetGeoTransform(geo)
outds.SetProjection(proj)
outband = outds.GetRasterBand(1)
outband.WriteArray(s_data)
outband.SetNoDataValue(-999)
坡度結果
import gdal
import numpy as np
from scipy import ndimage as nd
from copy import deepcopy
demfile = r"D:\微信公眾號\坡度坡向\N40E117_Albers.tif"
aspectfile = r"D:\微信公眾號\坡度坡向\N40E117_Albers_python_Aspect.tif"
#讀取DEM數(shù)據(jù)
ds = gdal.Open(demfile)
cols = ds.RasterXSize
rows = ds.RasterYSize
geo = ds.GetGeoTransform()
proj = ds.GetProjection()
dem_data = ds.ReadAsArray()
data = deepcopy(dem_data).astype(np.float32)
band = ds.GetRasterBand(1)
nodata = band.GetNoDataValue()
data[data == nodata] = np.nan
# data[data<-999]=np.nan
mask = np.isnan(data)
# 將無效值或背景值臨近像元填充
if np.sum(mask) > 0:
ind = nd.distance_transform_edt(mask, return_distances=False, return_indices=True)
data = data[tuple(ind)]
# 計算坡向
xsize = np.abs(geo[1])
ysize = np.abs(geo[5])
x = ((data[:-2, 2:] - data[:-2, :-2]) + 2 * (data[1:-1, 2:] - data[1:-1, :-2]) + (data[2:, 2:] - data[2:, :-2])) / (8 * xsize)
y = ((data[2:, :-2] - data[:-2, :-2]) + 2 * (data[2:, 1:-1] - data[:-2, 1:-1]) + (data[2:, 2:] - data[:-2, 2:])) / (8 * ysize)
a_data = np.full((rows, cols), -999, dtype=np.float32)
a_data[1:-1, 1:-1] = np.arctan2(y, -1 * x) * 57.
a_data_ = deepcopy(a_data[1:-1, 1:-1])
a_data[1:-1, 1:-1][a_data_ < 0] = 90 - a_data[1:-1, 1:-1][a_data_ < 0]
a_data[1:-1, 1:-1][a_data_ >90] = 450 - a_data[1:-1, 1:-1][a_data_ > 90]
a_data[1:-1, 1:-1][(a_data_ >= 0) & (a_data_ <= 90)] = 90 - a_data[1:-1, 1:-1][(a_data_ >= 0) & (a_data_ <= 90)]
a_data[1:-1, 1:-1][(x==0.)& (y==0.)] = -1
a_data[1:-1, 1:-1][(x==0.)& (y>0.)] = 0
a_data[1:-1, 1:-1][(x==0.)& (y<0.)] = 180
a_data[1:-1, 1:-1][(x>0.)& (y==0.)] = 90
a_data[1:-1, 1:-1][(x<0.)& (y==0.)] = 270.
# 邊緣填充
a_mask = a_data==-999
if np.sum(a_mask) > 0:
ind = nd.distance_transform_edt(a_mask, return_distances=False, return_indices=True)
a_data = a_data[tuple(ind)]
# 掩膜
a_data[dem_data==nodata] = -999
# 寫出結果
driver = gdal.GetDriverByName("gtiff")
outds = driver.Create(aspectfile, cols, rows, 1, gdal.GDT_Float32)
outds.SetGeoTransform(geo)
outds.SetProjection(proj)
outband = outds.GetRasterBand(1)
outband.WriteArray(a_data)
outband.SetNoDataValue(-999)
坡向結果
測試數(shù)據(jù):
鏈接:https://pan.baidu.com/s/1PODbTJn1JOqOA4qeaJq4Gg
提取碼:l3fw
?
歡迎關注個人wx_gzh: 小Rser