什么是NoSQL
創(chuàng)新互聯(lián)建站是一家集網(wǎng)站建設(shè),拉孜企業(yè)網(wǎng)站建設(shè),拉孜品牌網(wǎng)站建設(shè),網(wǎng)站定制,拉孜網(wǎng)站建設(shè)報(bào)價(jià),網(wǎng)絡(luò)營(yíng)銷(xiāo),網(wǎng)絡(luò)優(yōu)化,拉孜網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強(qiáng)企業(yè)競(jìng)爭(zhēng)力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時(shí)我們時(shí)刻保持專業(yè)、時(shí)尚、前沿,時(shí)刻以成就客戶成長(zhǎng)自我,堅(jiān)持不斷學(xué)習(xí)、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實(shí)用型網(wǎng)站。
大家有沒(méi)有聽(tīng)說(shuō)過(guò)“NoSQL”呢?近年,這個(gè)詞極受關(guān)注。看到“NoSQL”這個(gè)詞,大家可能會(huì)誤以為是“No!SQL”的縮寫(xiě),并深感憤怒:“SQL怎么會(huì)沒(méi)有必要了呢?”但實(shí)際上,它是“Not Only SQL”的縮寫(xiě)。它的意義是:適用關(guān)系型數(shù)據(jù)庫(kù)的時(shí)候就使用關(guān)系型數(shù)據(jù)庫(kù),不適用的時(shí)候也沒(méi)有必要非使用關(guān)系型數(shù)據(jù)庫(kù)不可,可以考慮使用更加合適的數(shù)據(jù)存儲(chǔ)。
為彌補(bǔ)關(guān)系型數(shù)據(jù)庫(kù)的不足,各種各樣的NoSQL數(shù)據(jù)庫(kù)應(yīng)運(yùn)而生。
為了更好地了解本書(shū)所介紹的NoSQL數(shù)據(jù)庫(kù),對(duì)關(guān)系型數(shù)據(jù)庫(kù)的理解是必不可少的。那么,就讓我們先來(lái)看一看關(guān)系型數(shù)據(jù)庫(kù)的歷史、分類和特征吧。
關(guān)系型數(shù)據(jù)庫(kù)簡(jiǎn)史
1969年,埃德加?6?1弗蘭克?6?1科德(Edgar Frank Codd)發(fā)表了劃時(shí)代的論文,首次提出了關(guān)系數(shù)據(jù)模型的概念。但可惜的是,刊登論文的《IBM Research Report》只是IBM公司的內(nèi)部刊物,因此論文反響平平。1970年,他再次在刊物《Communication of the ACM》上發(fā)表了題為“A Relational Model of Data for Large Shared Data banks”(大型共享數(shù)據(jù)庫(kù)的關(guān)系模型)的論文,終于引起了大家的關(guān)注。
科德所提出的關(guān)系數(shù)據(jù)模型的概念成為了現(xiàn)今關(guān)系型數(shù)據(jù)庫(kù)的基礎(chǔ)。當(dāng)時(shí)的關(guān)系型數(shù)據(jù)庫(kù)由于硬件性能低劣、處理速度過(guò)慢而遲遲沒(méi)有得到實(shí)際應(yīng)用。但之后隨著硬件性能的提升,加之使用簡(jiǎn)單、性能優(yōu)越等優(yōu)點(diǎn),關(guān)系型數(shù)據(jù)庫(kù)得到了廣泛的應(yīng)用。
通用性及高性能
雖然本書(shū)是講解NoSQL數(shù)據(jù)庫(kù)的,但有一個(gè)重要的大前提,請(qǐng)大家一定不要誤解。這個(gè)大前提就是“關(guān)系型數(shù)據(jù)庫(kù)的性能絕對(duì)不低,它具有非常好的通用性和非常高的性能”。毫無(wú)疑問(wèn),對(duì)于絕大多數(shù)的應(yīng)用來(lái)說(shuō)它都是最有效的解決方案。
突出的優(yōu)勢(shì)
關(guān)系型數(shù)據(jù)庫(kù)作為應(yīng)用廣泛的通用型數(shù)據(jù)庫(kù),它的突出優(yōu)勢(shì)主要有以下幾點(diǎn):
保持?jǐn)?shù)據(jù)的一致性(事務(wù)處理)
由于以標(biāo)準(zhǔn)化為前提,數(shù)據(jù)更新的開(kāi)銷(xiāo)很小(相同的字段基本上都只有一處)
可以進(jìn)行JOIN等復(fù)雜查詢
存在很多實(shí)際成果和專業(yè)技術(shù)信息(成熟的技術(shù))
這其中,能夠保持?jǐn)?shù)據(jù)的一致性是關(guān)系型數(shù)據(jù)庫(kù)的最大優(yōu)勢(shì)。在需要嚴(yán)格保證數(shù)據(jù)一致性和處理完整性的情況下,用關(guān)系型數(shù)據(jù)庫(kù)是肯定沒(méi)有錯(cuò)的。但是有些情況不需要JOIN,對(duì)上述關(guān)系型數(shù)據(jù)庫(kù)的優(yōu)點(diǎn)也沒(méi)有什么特別需要,這時(shí)似乎也就沒(méi)有必要拘泥于關(guān)系型數(shù)據(jù)庫(kù)了。
關(guān)系型數(shù)據(jù)庫(kù)的不足
不擅長(zhǎng)的處理
就像之前提到的那樣,關(guān)系型數(shù)據(jù)庫(kù)的性能非常高。但是它畢竟是一個(gè)通用型的數(shù)據(jù)庫(kù),并不能完全適應(yīng)所有的用途。具體來(lái)說(shuō)它并不擅長(zhǎng)以下處理:
大量數(shù)據(jù)的寫(xiě)入處理
為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)(schema)變更
字段不固定時(shí)應(yīng)用
對(duì)簡(jiǎn)單查詢需要快速返回結(jié)果的處理
。。。。。。
NoSQL數(shù)據(jù)庫(kù)
為了彌補(bǔ)關(guān)系型數(shù)據(jù)庫(kù)的不足(特別是最近幾年),NoSQL數(shù)據(jù)庫(kù)出現(xiàn)了。關(guān)系型數(shù)據(jù)庫(kù)應(yīng)用廣泛,能進(jìn)行事務(wù)處理和JOIN等復(fù)雜處理。相對(duì)地,NoSQL數(shù)據(jù)庫(kù)只應(yīng)用在特定領(lǐng)域,基本上不進(jìn)行復(fù)雜的處理,但它恰恰彌補(bǔ)了之前所列舉的關(guān)系型數(shù)據(jù)庫(kù)的不足之處。
易于數(shù)據(jù)的分散
如前所述,關(guān)系型數(shù)據(jù)庫(kù)并不擅長(zhǎng)大量數(shù)據(jù)的寫(xiě)入處理。原本關(guān)系型數(shù)據(jù)庫(kù)就是以JOIN為前提的,就是說(shuō),各個(gè)數(shù)據(jù)之間存在關(guān)聯(lián)是關(guān)系型數(shù)據(jù)庫(kù)得名的主要原因。為了進(jìn)行JOIN處理,關(guān)系型數(shù)據(jù)庫(kù)不得不把數(shù)據(jù)存儲(chǔ)在同一個(gè)服務(wù)器內(nèi),這不利于數(shù)據(jù)的分散。相反,NoSQL數(shù)據(jù)庫(kù)原本就不支持JOIN處理,各個(gè)數(shù)據(jù)都是獨(dú)立設(shè)計(jì)的,很容易把數(shù)據(jù)分散到多個(gè)服務(wù)器上。由于數(shù)據(jù)被分散到了多個(gè)服務(wù)器上,減少了每個(gè)服務(wù)器上的數(shù)據(jù)量,即使要進(jìn)行大量數(shù)據(jù)的寫(xiě)入操作,處理起來(lái)也更加容易。同理,數(shù)據(jù)的讀入操作當(dāng)然也同樣容易。
提升性能和增大規(guī)模
下面說(shuō)一點(diǎn)題外話,如果想要使服務(wù)器能夠輕松地處理更大量的數(shù)據(jù),那么只有兩個(gè)選擇:一是提升性能,二是增大規(guī)模。下面我們來(lái)整理一下這兩者的不同。
首先,提升性能指的就是通過(guò)提升現(xiàn)行服務(wù)器自身的性能來(lái)提高處理能力。這是非常簡(jiǎn)單的方法,程序方面也不需要進(jìn)行變更,但需要一些費(fèi)用。若要購(gòu)買(mǎi)性能翻倍的服務(wù)器,需要花費(fèi)的資金往往不只是原來(lái)的2倍,可能需要多達(dá)5到10倍。這種方法雖然簡(jiǎn)單,但是成本較高。
另一方面,增大規(guī)模指的是使用多臺(tái)廉價(jià)的服務(wù)器來(lái)提高處理能力。它需要對(duì)程序進(jìn)行變更,但由于使用廉價(jià)的服務(wù)器,可以控制成本。另外,以后只要依葫蘆畫(huà)瓢增加廉價(jià)服務(wù)器的數(shù)量就可以了。
不對(duì)大量數(shù)據(jù)進(jìn)行處理的話就沒(méi)有使用的必要嗎?
NoSQL數(shù)據(jù)庫(kù)基本上來(lái)說(shuō)為了“使大量數(shù)據(jù)的寫(xiě)入處理更加容易(讓增加服務(wù)器數(shù)量更容易)”而設(shè)計(jì)的。但如果不是對(duì)大量數(shù)據(jù)進(jìn)行操作的話,NoSQL數(shù)據(jù)庫(kù)的應(yīng)用就沒(méi)有意義嗎?
答案是否定的。的確,它在處理大量數(shù)據(jù)方面很有優(yōu)勢(shì)。但實(shí)際上NoSQL數(shù)據(jù)庫(kù)還有各種各樣的特點(diǎn),如果能夠恰當(dāng)?shù)乩眠@些特點(diǎn)將會(huì)是非常有幫助。具體的例子將會(huì)在第2章和第3章進(jìn)行介紹,這些用途將會(huì)讓你感受到利用NoSQL的好處。
希望順暢地對(duì)數(shù)據(jù)進(jìn)行緩存(Cache)處理
希望對(duì)數(shù)組類型的數(shù)據(jù)進(jìn)行高速處理
希望進(jìn)行全部保存
多樣的NoSQL數(shù)據(jù)庫(kù)
NoSQL數(shù)據(jù)庫(kù)存在著“key-value存儲(chǔ)”、“文檔型數(shù)據(jù)庫(kù)”、“列存儲(chǔ)數(shù)據(jù)庫(kù)”等各種各樣的種類,每種數(shù)據(jù)庫(kù)又包含各自的特點(diǎn)。下一節(jié)讓我們一起來(lái)了解一下NoSQL數(shù)據(jù)庫(kù)的種類和特點(diǎn)。
NoSQL數(shù)據(jù)庫(kù)是什么
NoSQL說(shuō)起來(lái)簡(jiǎn)單,但實(shí)際上到底有多少種呢?我在提筆的時(shí)候,到NoSQL的官方網(wǎng)站上確認(rèn)了一下,竟然已經(jīng)有122種了。另外官方網(wǎng)站上也介紹了本書(shū)沒(méi)有涉及到的圖形數(shù)據(jù)庫(kù)和對(duì)象數(shù)據(jù)庫(kù)等各個(gè)類別。不知不覺(jué)間,原來(lái)已經(jīng)出現(xiàn)了這么多的NoSQL數(shù)據(jù)庫(kù)啊。
本節(jié)將為大家介紹具有代表性的NoSQL數(shù)據(jù)庫(kù)。
key-value存儲(chǔ)
這是最常見(jiàn)的NoSQL數(shù)據(jù)庫(kù),它的數(shù)據(jù)是以key-value的形式存儲(chǔ)的。雖然它的處理速度非???,但是基本上只能通過(guò)key的完全一致查詢獲取數(shù)據(jù)。根據(jù)數(shù)據(jù)的保存方式可以分為臨時(shí)性、永久性和兩者兼具三種。
臨時(shí)性
memcached屬于這種類型。所謂臨時(shí)性就是 “數(shù)據(jù)有可能丟失”的意思。memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非???,但是當(dāng)memcached停止的時(shí)候,數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無(wú)法操作超出內(nèi)存容量的數(shù)據(jù)(舊數(shù)據(jù)會(huì)丟失)。
在內(nèi)存中保存數(shù)據(jù)
可以進(jìn)行非??焖俚谋4婧妥x取處理
數(shù)據(jù)有可能丟失
永久性
Tokyo Tyrant、Flare、ROMA等屬于這種類型。和臨時(shí)性相反,所謂永久性就是“數(shù)據(jù)不會(huì)丟失”的意思。這里的key-value存儲(chǔ)不像memcached那樣在內(nèi)存中保存數(shù)據(jù),而是把數(shù)據(jù)保存在硬盤(pán)上。與memcached在內(nèi)存中處理數(shù)據(jù)比起來(lái),由于必然要發(fā)生對(duì)硬盤(pán)的IO操作,所以性能上還是有差距的。但數(shù)據(jù)不會(huì)丟失是它最大的優(yōu)勢(shì)。
在硬盤(pán)上保存數(shù)據(jù)
可以進(jìn)行非??焖俚谋4婧妥x取處理(但無(wú)法與memcached相比)
數(shù)據(jù)不會(huì)丟失
兩者兼具
Redis屬于這種類型。Redis有些特殊,臨時(shí)性和永久性兼具,且集合了臨時(shí)性key-value存儲(chǔ)和永久性key-value存儲(chǔ)的優(yōu)點(diǎn)。Redis首先把數(shù)據(jù)保存到內(nèi)存中,在滿足特定條件(默認(rèn)是15分鐘一次以上,5分鐘內(nèi)10個(gè)以上,1分鐘內(nèi)10000個(gè)以上的key發(fā)生變更)的時(shí)候?qū)?shù)據(jù)寫(xiě)入到硬盤(pán)中。這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過(guò)寫(xiě)入硬盤(pán)來(lái)保證數(shù)據(jù)的永久性。這種類型的數(shù)據(jù)庫(kù)特別適合于處理數(shù)組類型的數(shù)據(jù)。
同時(shí)在內(nèi)存和硬盤(pán)上保存數(shù)據(jù)
可以進(jìn)行非??焖俚谋4婧妥x取處理
保存在硬盤(pán)上的數(shù)據(jù)不會(huì)消失(可以恢復(fù))
適合于處理數(shù)組類型的數(shù)據(jù)
面向文檔的數(shù)據(jù)庫(kù)
MongoDB、CouchDB屬于這種類型。它們屬于NoSQL數(shù)據(jù)庫(kù),但與key-value存儲(chǔ)相異。
不定義表結(jié)構(gòu)
面向文檔的數(shù)據(jù)庫(kù)具有以下特征:即使不定義表結(jié)構(gòu),也可以像定義了表結(jié)構(gòu)一樣使用。關(guān)系型數(shù)據(jù)庫(kù)在變更表結(jié)構(gòu)時(shí)比較費(fèi)事,而且為了保持一致性還需修改程序。然而NoSQL數(shù)據(jù)庫(kù)則可省去這些麻煩(通常程序都是正確的),確實(shí)是方便快捷。
可以使用復(fù)雜的查詢條件
跟key-value存儲(chǔ)不同的是,面向文檔的數(shù)據(jù)庫(kù)可以通過(guò)復(fù)雜的查詢條件來(lái)獲取數(shù)據(jù)。雖然不具備事務(wù)處理和JOIN這些關(guān)系型數(shù)據(jù)庫(kù)所具有的處理能力,但除此以外的其他處理基本上都能實(shí)現(xiàn)。這是非常容易使用的NoSQL數(shù)據(jù)庫(kù)。
不需要定義表結(jié)構(gòu)
可以利用復(fù)雜的查詢條件
面向列的數(shù)據(jù)庫(kù)
Cassandra、Hbase、HyperTable屬于這種類型。由于近年來(lái)數(shù)據(jù)量出現(xiàn)爆發(fā)性增長(zhǎng),這種類型的NoSQL數(shù)據(jù)庫(kù)尤其引人注目。
面向行的數(shù)據(jù)庫(kù)和面向列的數(shù)據(jù)庫(kù)
普通的關(guān)系型數(shù)據(jù)庫(kù)都是以行為單位來(lái)存儲(chǔ)數(shù)據(jù)的,擅長(zhǎng)進(jìn)行以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關(guān)系型數(shù)據(jù)庫(kù)也被稱為面向行的數(shù)據(jù)庫(kù)。相反,面向列的數(shù)據(jù)庫(kù)是以列為單位來(lái)存儲(chǔ)數(shù)據(jù)的,擅長(zhǎng)以列為單位讀入數(shù)據(jù)。
高擴(kuò)展性
面向列的數(shù)據(jù)庫(kù)具有高擴(kuò)展性,即使數(shù)據(jù)增加也不會(huì)降低相應(yīng)的處理速度(特別是寫(xiě)入速度),所以它主要應(yīng)用于需要處理大量數(shù)據(jù)的情況。另外,利用面向列的數(shù)據(jù)庫(kù)的優(yōu)勢(shì),把它作為批處理程序的存儲(chǔ)器來(lái)對(duì)大量數(shù)據(jù)進(jìn)行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫(kù)跟現(xiàn)行數(shù)據(jù)庫(kù)存儲(chǔ)的思維方式有很大不同,應(yīng)用起來(lái)十分困難。
高擴(kuò)展性(特別是寫(xiě)入處理)
應(yīng)用十分困難
最近,像Twitter和Facebook這樣需要對(duì)大量數(shù)據(jù)進(jìn)行更新和查詢的網(wǎng)絡(luò)服務(wù)不斷增加,面向列的數(shù)據(jù)庫(kù)的優(yōu)勢(shì)對(duì)其中一些服務(wù)是非常有用的,但是由于這與本書(shū)所要介紹的內(nèi)容關(guān)系不大,就不進(jìn)行詳細(xì)介紹了。
總結(jié):
NoSQL并不是No-SQL,而是指Not Only SQL。
NoSQL的出現(xiàn)是為了彌補(bǔ)SQL數(shù)據(jù)庫(kù)因?yàn)槭聞?wù)等機(jī)制帶來(lái)的對(duì)海量數(shù)據(jù)、高并發(fā)請(qǐng)求的處理的性能上的欠缺。
NoSQL不是為了替代SQL而出現(xiàn)的,它是一種替補(bǔ)方案,而不是解決方案的首選。
絕大多數(shù)的NoSQL產(chǎn)品都是基于大內(nèi)存和高性能隨機(jī)讀寫(xiě)的(比如具有更高性能的固態(tài)硬盤(pán)陣列),一般的小型企業(yè)在選擇NoSQL時(shí)一定要慎重!不要為了NoSQL而NoSQL,可能會(huì)導(dǎo)致花了冤枉錢(qián)又耽擱了項(xiàng)目進(jìn)程。
NoSQL不是萬(wàn)能的,但在大型項(xiàng)目中,你往往需要它!
NoSQL太火,冒出太多產(chǎn)品了,保守估計(jì)也成百上千了。
互聯(lián)網(wǎng)公司常用的基本集中在以下幾種,每種只舉一個(gè)比較常見(jiàn)或者應(yīng)用比較成功的例子吧。
1. In-Memory KV Store : Redis
in memory key-value store,同時(shí)提供了更加豐富的數(shù)據(jù)結(jié)構(gòu)和運(yùn)算的能力,成功用法是替代memcached,通過(guò)checkpoint和commit log提供了快速的宕機(jī)恢復(fù),同時(shí)支持replication提供讀可擴(kuò)展和高可用。
2. Disk-Based KV Store: Leveldb
真正基于磁盤(pán)的key-value storage, 模型單一簡(jiǎn)單,數(shù)據(jù)量不受限于內(nèi)存大小,數(shù)據(jù)落盤(pán)高可靠,Google的幾位大神出品的精品,LSM模型天然寫(xiě)優(yōu)化,順序?qū)懕P(pán)的方式對(duì)于新硬件ssd再適合不過(guò)了,不足是僅提供了一個(gè)庫(kù),需要自己封裝server端。
3. Document Store: Mongodb
分布式nosql,具備了區(qū)別mysql的最大亮點(diǎn):可擴(kuò)展性。mongodb 最新引人的莫過(guò)于提供了sql接口,是目前nosql里最像mysql的,只是沒(méi)有ACID的特性,發(fā)展很快,支持了索引等特性,上手容易,對(duì)于數(shù)據(jù)量遠(yuǎn)超內(nèi)存限制的場(chǎng)景來(lái)說(shuō),還需要慎重。
4. Column Table Store: HBase
這個(gè)富二代似乎不用贅述了,最大的優(yōu)勢(shì)是開(kāi)源,對(duì)于普通的scan和基于行的get等基本查詢,性能完全不是問(wèn)題,只是只提供裸的api,易用性上是短板,可擴(kuò)展性方面是最強(qiáng)的,其次坐上了Hadoop的快車(chē),社區(qū)發(fā)展很快,各種基于其上的開(kāi)源產(chǎn)品不少,來(lái)解決諸如join、聚集運(yùn)算等復(fù)雜查詢。
答案:A
1.文檔型數(shù)據(jù)庫(kù)
作為最受歡迎的NoSQL產(chǎn)品,文檔型數(shù)據(jù)庫(kù)MongoDB當(dāng)仁不讓地占據(jù)了第一的位置,同時(shí)它也是所有NoSQL數(shù)據(jù)庫(kù)中排名最靠前的產(chǎn)品(總排行榜第七名)。Apache基金會(huì)的CouchDB排在第二,基于.Net的數(shù)據(jù)庫(kù)RavenDB排在第三,Couchbase排在第四。
2.鍵值(Key-value)數(shù)據(jù)庫(kù)
鍵值(Key-value)數(shù)據(jù)庫(kù)是NoSQL領(lǐng)域中應(yīng)用范圍最廣的,也是涉及產(chǎn)品最多的一種模型。從最簡(jiǎn)單的BerkeleyDB到功能豐富的分布式數(shù)據(jù)庫(kù)Riak再到Amazon托管的DynamoDB不一而足。
在鍵值數(shù)據(jù)庫(kù)流行度排行中,Redis不出意外地排名第一,它是一款由Vmware支持的內(nèi)存數(shù)據(jù)庫(kù),總體排名第十一。排在第二位的是Memcached,它在緩存系統(tǒng)中應(yīng)用十分廣泛。排在之后的是Riak、BerkeleyDB、SimpleDB、DynamoDB以及甲骨文的Oracle NoSQL數(shù)據(jù)庫(kù)。值得注意的是,Oracle NoSQL數(shù)據(jù)庫(kù)上榜不久,得分已經(jīng)翻番,上升勢(shì)頭非常迅猛。
3. 列式存儲(chǔ)
列式存儲(chǔ)被視為NoSQL數(shù)據(jù)庫(kù)中非常重要的一種模式,其中Cassandra流行度最高,它已經(jīng)由Facebook轉(zhuǎn)交給到Apache進(jìn)行管理,同時(shí)Cassandra在全體數(shù)據(jù)庫(kù)排名中排在第十位,緊隨MongoDB成為第二受歡迎的NoSQL數(shù)據(jù)庫(kù)?;贖adoop的Hbase排在第二位,Hypertable排在第三。而Google的BigTable并未列入排名,原因是它并未正式公開(kāi)。