No SQL DB是一種和關(guān)系型數(shù)據(jù)庫(kù)相對(duì)應(yīng)的對(duì)象數(shù)據(jù)庫(kù)。按照數(shù)據(jù)模型保存性質(zhì)將當(dāng)前NoSQL分為四種:
目前創(chuàng)新互聯(lián)已為數(shù)千家的企業(yè)提供了網(wǎng)站建設(shè)、域名、虛擬主機(jī)、網(wǎng)站托管維護(hù)、企業(yè)網(wǎng)站設(shè)計(jì)、樊城網(wǎng)站維護(hù)等服務(wù),公司將堅(jiān)持客戶導(dǎo)向、應(yīng)用為本的策略,正道將秉承"和諧、參與、激情"的文化,與客戶和合作伙伴齊心協(xié)力一起成長(zhǎng),共同發(fā)展。
1.Key-value stores鍵值存儲(chǔ), 保存keys+BLOBs
2.Table-oriented 面向表, 主要有Google的BigTable和Cassandra.
3.Document-oriented面向文本, 文本是一種類似XML文檔,MongoDB 和 CouchDB
4.Graph-oriented 面向圖論. 如Neo4J.
關(guān)系型數(shù)據(jù)庫(kù)的弊端:
關(guān)系型數(shù)據(jù)庫(kù)的歷史已經(jīng)有30余年了,因此,在某些情況下,關(guān)系型數(shù)據(jù)庫(kù)的弱點(diǎn)就會(huì)暴露出來(lái):
1. “對(duì)象-關(guān)系 阻抗不匹配”。關(guān)系模型和面向?qū)ο竽P驮诟拍钌洗嬖谔烊坏牟黄ヅ涞牡胤?,比如?duì)象模型當(dāng)中特有的“繼承”,“組合”,“聚合”,“依賴”的概念在關(guān)系模型當(dāng)中是不存在的。
2. “模式演進(jìn)”。即隨著時(shí)間的推移,需要對(duì)數(shù)據(jù)庫(kù)模式進(jìn)行調(diào)整以便適應(yīng)新的需求,然而,對(duì)數(shù)據(jù)庫(kù)模式的調(diào)整是的成本很高的動(dòng)作,因此很多設(shè)計(jì)師在系統(tǒng)設(shè)計(jì)之初會(huì)設(shè)計(jì)一個(gè)兼容性很強(qiáng)的數(shù)據(jù)庫(kù)模式,以應(yīng)對(duì)將來(lái)可能出現(xiàn)的需求,然而在現(xiàn)在的web系統(tǒng)開(kāi)發(fā)過(guò)程中,系統(tǒng)的變更更加頻繁,幾乎無(wú)法預(yù)先設(shè)計(jì)出一種“萬(wàn)能”的數(shù)據(jù)庫(kù)模式以滿足所有的需求,因此 模式演進(jìn)的弊端就愈發(fā)凸顯。
3. 關(guān)系型數(shù)據(jù)庫(kù)處理 稀疏表時(shí)的性能非常差。
4. network-oriented data 很適合處理 人工智能、社交網(wǎng)絡(luò)中的一些需求。
所以,各種各樣的No SQL DB 出現(xiàn)了,這里只簡(jiǎn)單介紹下Neo4J 的基本知識(shí)。
Neo 數(shù)據(jù)模型
Neo4J 是一個(gè)基于圖實(shí)現(xiàn)的No SQL DB, 其基本的數(shù)據(jù)類型有如下幾種:
Node, Relationship, Property.
Node 對(duì)應(yīng)于圖中的 節(jié)點(diǎn),Relationship 對(duì)應(yīng)圖中的邊,Node 和 Relationship 都可以擁有Property,
Property 的數(shù)據(jù)結(jié)構(gòu)為。
數(shù)據(jù)遍歷
Web1.0的時(shí)代,數(shù)據(jù)訪問(wèn)量很有限,用一夫當(dāng)關(guān)的高性能的單點(diǎn)服務(wù)器可以解決大部分問(wèn)題。
隨著Web2.0的時(shí)代的到來(lái),用戶訪問(wèn)量大幅度提升,同時(shí)產(chǎn)生了大量的用戶數(shù)據(jù)。加上后來(lái)的智能移動(dòng)設(shè)備的普及,所有的互聯(lián)網(wǎng)平臺(tái)都面臨了巨大的性能挑戰(zhàn)。
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關(guān)系型的數(shù)據(jù)庫(kù)。
NoSQL 不依賴業(yè)務(wù)邏輯方式存儲(chǔ),而以簡(jiǎn)單的key-value模式存儲(chǔ)。因此大大的增加了數(shù)據(jù)庫(kù)的擴(kuò)展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式數(shù)據(jù)庫(kù) 列式數(shù)據(jù)庫(kù) Hbase Hbase
HBase是Hadoop項(xiàng)目中的數(shù)據(jù)庫(kù)。它用于需要對(duì)大量的數(shù)據(jù)進(jìn)行隨機(jī)、實(shí)時(shí)的讀寫(xiě)操作的場(chǎng)景中。
HBase的目標(biāo)就是處理數(shù)據(jù)量非常龐大的表,可以用普通的計(jì)算機(jī)處理超過(guò)10億行數(shù)據(jù),還可處理有數(shù)百萬(wàn)列元素的數(shù)據(jù)表。
Cassandra Cassandra
Apache Cassandra是一款免費(fèi)的開(kāi)源NoSQL數(shù)據(jù)庫(kù),其設(shè)計(jì)目的在于管理由大量商用服務(wù)器構(gòu)建起來(lái)的龐大集群上的海量數(shù)據(jù)集(數(shù)據(jù)量通常達(dá)到PB級(jí)別)。在眾多顯著特性當(dāng)中,Cassandra最為卓越的長(zhǎng)處是對(duì)寫(xiě)入及讀取操作進(jìn)行規(guī)模調(diào)整,而且其不強(qiáng)調(diào)主集群的設(shè)計(jì)思路能夠以相對(duì)直觀的方式簡(jiǎn)化各集群的創(chuàng)建與擴(kuò)展流程。
主要應(yīng)用:社會(huì)關(guān)系,公共交通網(wǎng)絡(luò),地圖及網(wǎng)絡(luò)拓譜(n*(n-1)/2)
NoSQL薄弱的安全性會(huì)給企業(yè)帶來(lái)負(fù)面影響 。Imperva公司創(chuàng)始人兼CTO Amichai Shulman如是說(shuō)。在新的一年中,無(wú)疑會(huì)有更多企業(yè)開(kāi)始或籌劃部署NoSQL。方案落實(shí)后就會(huì)逐漸發(fā)現(xiàn)種種安全問(wèn)題,因此早做準(zhǔn)備才是正確的選擇。 作為傳統(tǒng)關(guān)系型數(shù)據(jù)庫(kù)的替代方案,NoSQL在查詢中并不使用SQL語(yǔ)言,而且允許用戶隨時(shí)變更數(shù)據(jù)屬性。此類數(shù)據(jù)庫(kù)以擴(kuò)展性良好著稱,并能夠在需要大量應(yīng)用程序與數(shù)據(jù)庫(kù)本身進(jìn)行實(shí)時(shí)交互的交易處理任務(wù)中發(fā)揮性能優(yōu)勢(shì),Couchbase創(chuàng)始人兼產(chǎn)品部門(mén)高級(jí)副總裁James Phillips解釋稱:NoSQL以交易業(yè)務(wù)為核心。它更注重實(shí)時(shí)處理能力并且擅長(zhǎng)直接對(duì)數(shù)據(jù)進(jìn)行操作,大幅度促進(jìn)了交互型軟件系統(tǒng)的發(fā)展。Phillips指出。其中最大的優(yōu)勢(shì)之一是能夠隨時(shí)改變(在屬性方面),由于結(jié)構(gòu)性的弱化,修改過(guò)程非常便捷。 NoSQL最大優(yōu)勢(shì)影響其安全性 NoSQL的關(guān)鍵性特色之一是其動(dòng)態(tài)的數(shù)據(jù)模型,Shulman解釋道。我可以在其運(yùn)作過(guò)程中加入新的屬性記錄。因此與這種結(jié)構(gòu)相匹配的安全模型必須具備一定的前瞻性規(guī)劃。也就是說(shuō),它必須能夠了解數(shù)據(jù)庫(kù)引入的新屬性將引發(fā)哪些改變,以及新加入的屬性擁有哪些權(quán)限。然而這個(gè)層面上的安全概念目前尚不存在,根本沒(méi)有這樣的解決方案。 根據(jù)Phillips的說(shuō)法,某些NoSQL開(kāi)發(fā)商已經(jīng)開(kāi)始著手研發(fā)安全機(jī)制,至少在嘗試保護(hù)數(shù)據(jù)的完整性。在關(guān)系型數(shù)據(jù)庫(kù)領(lǐng)域,如果我們的數(shù)據(jù)組成不正確,那么它將無(wú)法與結(jié)構(gòu)并行運(yùn)作,換言之?dāng)?shù)據(jù)插入操作整體將宣告失敗。目前各種驗(yàn)證規(guī)則與完整性檢查已經(jīng)比較完善,而事實(shí)證明這些驗(yàn)證機(jī)制都能在NoSQL中發(fā)揮作用。我們與其他人所推出的解決方案類似,都會(huì)在插入一條新記錄或是文檔型規(guī)則時(shí)觸發(fā),并在執(zhí)行過(guò)程中確保插入數(shù)據(jù)的正確性。 Shulman預(yù)計(jì)新用戶很快將在配置方面捅出大婁子,這并非因?yàn)镮T工作人員的玩忽職守,實(shí)際上主要原因是NoSQL作為一項(xiàng)新技術(shù)導(dǎo)致大多數(shù)人對(duì)其缺乏足夠的知識(shí)基礎(chǔ)。Application Security研發(fā)部門(mén)TeamSHATTER的經(jīng)理Alex Rothacker對(duì)上述觀點(diǎn)表示贊同。他指出,培訓(xùn)的一大問(wèn)題在于,大多數(shù)NoSQL的從業(yè)者往往屬于新生代IT人士,他們對(duì)于技術(shù)了解較多,但往往缺乏足夠的安全管理經(jīng)驗(yàn)。 如果他們從傳統(tǒng)關(guān)系型數(shù)據(jù)庫(kù)入手,那么由于強(qiáng)制性安全機(jī)制的完備,他們可以在使用中學(xué)習(xí)。但NoSQL,只有行家才能通過(guò)觀察得出正確結(jié)論,并在大量研究工作后找到一套完備的安全解決方案。因此可能有90%的從業(yè)者由于知識(shí)儲(chǔ)備、安全經(jīng)驗(yàn)或是工作時(shí)間的局限而無(wú)法做到這一點(diǎn)。 NoSQL需在安全性方面進(jìn)行優(yōu)化 盡管Phillips認(rèn)同新技術(shù)與舊經(jīng)驗(yàn)之間存在差異,但企業(yè)在推廣NoSQL時(shí)加大對(duì)安全性的關(guān)注會(huì)起到很大程度的積極作用。他認(rèn)為此類數(shù)據(jù)存儲(chǔ)機(jī)制與傳統(tǒng)關(guān)系類數(shù)據(jù)庫(kù)相比,其中包含著的敏感類信息更少,而且與企業(yè)網(wǎng)絡(luò)內(nèi)部其它應(yīng)用程序的接觸機(jī)會(huì)也小得多。 他們并不把這項(xiàng)新技術(shù)完全當(dāng)成數(shù)據(jù)庫(kù)使用,正如我們?cè)谑占泶罅縼?lái)自其它應(yīng)用程序的業(yè)務(wù)類數(shù)據(jù)時(shí),往往也會(huì)考慮將其作為企業(yè)數(shù)據(jù)存儲(chǔ)機(jī)制一樣,他補(bǔ)充道。當(dāng)然,如果我打算研發(fā)一套具備某種特定功能的社交網(wǎng)絡(luò)、社交游戲或是某種特殊web應(yīng)用程序,也很可能會(huì)將其部署于防火墻之下。這樣一來(lái)它不僅與應(yīng)用程序緊密結(jié)合,也不會(huì)被企業(yè)中的其它部門(mén)所觸及。 但Rothacker同時(shí)表示,這種過(guò)度依賴周邊安全機(jī)制的數(shù)據(jù)庫(kù)系統(tǒng)也存在著極其危險(xiǎn)的漏洞。一旦系統(tǒng)完全依附于周邊安全模型,那么驗(yàn)證機(jī)制就必須相對(duì)薄弱,而且缺乏多用戶管理及數(shù)據(jù)訪問(wèn)方面的安全保護(hù)。只要擁有高權(quán)限賬戶,我們幾乎能訪問(wèn)存儲(chǔ)機(jī)制中的一切數(shù)據(jù)。舉例來(lái)說(shuō),Brian Sullivan就在去年的黑帽大會(huì)上演示了如何在完全不清楚數(shù)據(jù)具體內(nèi)容的情況下,將其信息羅列出來(lái)甚至導(dǎo)出。 而根據(jù)nCircle公司CTO Tim ‘TK’ Keanini的觀點(diǎn),即使是與有限的應(yīng)用程序相關(guān)聯(lián),NoSQL也很有可能被暴露在互聯(lián)網(wǎng)上。在缺少嚴(yán)密網(wǎng)絡(luò)劃分的情況下,它可能成為攻擊者窺探存儲(chǔ)數(shù)據(jù)的薄弱環(huán)節(jié)。因?yàn)镹oSQL在設(shè)計(jì)上主要用于互聯(lián)網(wǎng)規(guī)模的部署,所以它很可能被直接連接到互聯(lián)網(wǎng)中,進(jìn)而面臨大量攻擊行為。 其中發(fā)生機(jī)率最高的攻擊行為就是注入式攻擊,這也是一直以來(lái)肆虐于關(guān)系類數(shù)據(jù)庫(kù)領(lǐng)域的頭號(hào)公敵。盡管NoSQL沒(méi)有將SQL作為查詢語(yǔ)言,也并不代表它能夠免受注入式攻擊的威脅。雖然不少人宣稱SQL注入在NoSQL這邊不起作用,但其中的原理是完全一致的。攻擊者需要做的只是改變自己注入內(nèi)容的語(yǔ)法形式,Rothacker解釋稱。也就是說(shuō)雖然SQL注入不會(huì)出現(xiàn),但JavaScript注入或者JSON注入同樣能威脅安全。 此外,攻擊者在籌劃對(duì)這類數(shù)據(jù)庫(kù)展開(kāi)侵襲時(shí),也很可能進(jìn)一步優(yōu)化自己的工具。不成熟的安全技術(shù)往往帶來(lái)這樣的窘境:需要花費(fèi)大量時(shí)間學(xué)習(xí)如何保障其安全,但幾乎每個(gè)IT人士都能迅速掌握攻擊活動(dòng)的組織方法。因此我認(rèn)為攻擊者將會(huì)始終走在安全部署的前面,Shulman說(shuō)道。遺憾的是搞破壞總比防范工作更容易,而我們已經(jīng)看到不少NoSQL技術(shù)方面的公開(kāi)漏洞,尤其是目前引起熱議的、以JSON注入為載體的攻擊方式。 NoSQL安全性并非其阻礙 然而,這一切都不應(yīng)該成為企業(yè)使用NoSQL的阻礙,他總結(jié)道。我認(rèn)為歸根結(jié)底,這應(yīng)該算是企業(yè)的一種商業(yè)決策。只要這種選擇能夠帶來(lái)吸引力巨大的商業(yè)機(jī)遇,就要承擔(dān)一定風(fēng)險(xiǎn),Shulman解釋道。但應(yīng)該采取一定措施以盡量弱化這種風(fēng)險(xiǎn)。 舉例來(lái)說(shuō),鑒于數(shù)據(jù)庫(kù)對(duì)外部安全機(jī)制的依賴性,Rothacker建議企業(yè)積極考慮引入加密方案。他警告稱,企業(yè)必須對(duì)與NoSQL相對(duì)接的應(yīng)用程序代碼仔細(xì)檢查。換言之,企業(yè)必須嚴(yán)格挑選負(fù)責(zé)此類項(xiàng)目部署的人選,確保將最好的人才用于這方面事務(wù),Shulman表示。當(dāng)大家以NoSQL為基礎(chǔ)編寫(xiě)應(yīng)用程序時(shí),必須啟用有經(jīng)驗(yàn)的編程人員,因?yàn)榭蛻舳塑浖堑謸醢踩珕?wèn)題的第一道屏障。切實(shí)為額外緩沖區(qū)的部署留出時(shí)間與預(yù)算,這能夠讓員工有閑暇反思自己的工作內(nèi)容并盡量多顧及安全考量多想一點(diǎn)就是進(jìn)步。綜上所述,這可能與部署傳統(tǒng)的關(guān)系類數(shù)據(jù)庫(kù)也沒(méi)什么不同。 具有諷刺意味的是,近年來(lái)數(shù)據(jù)庫(kù)應(yīng)用程序在安全性方面的提升基本都跟數(shù)據(jù)庫(kù)本身沒(méi)什么關(guān)系,nCircle公司安全研究及開(kāi)發(fā)部門(mén)總監(jiān)Oliver Lavery如是說(shuō)。
NoSQL太火,冒出太多產(chǎn)品了,保守估計(jì)也成百上千了。
互聯(lián)網(wǎng)公司常用的基本集中在以下幾種,每種只舉一個(gè)比較常見(jiàn)或者應(yīng)用比較成功的例子吧。
1. In-Memory KV Store : Redis
in memory key-value store,同時(shí)提供了更加豐富的數(shù)據(jù)結(jié)構(gòu)和運(yùn)算的能力,成功用法是替代memcached,通過(guò)checkpoint和commit log提供了快速的宕機(jī)恢復(fù),同時(shí)支持replication提供讀可擴(kuò)展和高可用。
2. Disk-Based KV Store: Leveldb
真正基于磁盤(pán)的key-value storage, 模型單一簡(jiǎn)單,數(shù)據(jù)量不受限于內(nèi)存大小,數(shù)據(jù)落盤(pán)高可靠,Google的幾位大神出品的精品,LSM模型天然寫(xiě)優(yōu)化,順序?qū)懕P(pán)的方式對(duì)于新硬件ssd再適合不過(guò)了,不足是僅提供了一個(gè)庫(kù),需要自己封裝server端。
3. Document Store: Mongodb
分布式nosql,具備了區(qū)別mysql的最大亮點(diǎn):可擴(kuò)展性。mongodb 最新引人的莫過(guò)于提供了sql接口,是目前nosql里最像mysql的,只是沒(méi)有ACID的特性,發(fā)展很快,支持了索引等特性,上手容易,對(duì)于數(shù)據(jù)量遠(yuǎn)超內(nèi)存限制的場(chǎng)景來(lái)說(shuō),還需要慎重。
4. Column Table Store: HBase
這個(gè)富二代似乎不用贅述了,最大的優(yōu)勢(shì)是開(kāi)源,對(duì)于普通的scan和基于行的get等基本查詢,性能完全不是問(wèn)題,只是只提供裸的api,易用性上是短板,可擴(kuò)展性方面是最強(qiáng)的,其次坐上了Hadoop的快車,社區(qū)發(fā)展很快,各種基于其上的開(kāi)源產(chǎn)品不少,來(lái)解決諸如join、聚集運(yùn)算等復(fù)雜查詢。
(1) 確保主存儲(chǔ)節(jié)點(diǎn)一旦失效就立刻切換到備用復(fù)制節(jié)點(diǎn)。這一般基于成熟健壯的看門(mén)狗技術(shù) (Watch Dog),看門(mén)狗持續(xù)的監(jiān)控節(jié)點(diǎn),一旦發(fā)現(xiàn)失效就切換到健康的復(fù)制節(jié)點(diǎn)。
(2) 對(duì)于你的應(yīng)用程序而言切換過(guò)程應(yīng)盡可能透明;最理想的情況是無(wú)需更改任何配置。更高級(jí)的解決方案是僅僅修改DNS中存儲(chǔ)節(jié)點(diǎn)的IP地址,確保修復(fù)過(guò)程在幾秒鐘之內(nèi)完成。
(3) 自動(dòng)切換應(yīng)當(dāng)基于Quorum并且是完全一致(Fully Consistent)或最終一致(Eventually Consistent)的。
本文將從單機(jī)MySQL的場(chǎng)景出發(fā),簡(jiǎn)述一下隨著網(wǎng)站的訪問(wèn)量越來(lái)越大,數(shù)據(jù)庫(kù)部署的演進(jìn)過(guò)程,到為什么要用MySQL的必要性。
大數(shù)據(jù)時(shí)代的數(shù)據(jù)有3V的特點(diǎn):海量Volume、多樣Variety、實(shí)時(shí)Velocity。
互聯(lián)網(wǎng)網(wǎng)站需求的3高的特點(diǎn):高并發(fā)、高可擴(kuò)、高性能。
一、單機(jī)MySql
當(dāng)一個(gè)網(wǎng)站的訪問(wèn)量不大時(shí),用單個(gè)數(shù)據(jù)庫(kù)完全可以輕松應(yīng)付。
在那個(gè)時(shí)候,更多的都是靜態(tài)網(wǎng)頁(yè),動(dòng)態(tài)交互類型的網(wǎng)站不多。
上述架構(gòu)下,我們來(lái)看看數(shù)據(jù)存儲(chǔ)的瓶頸是什么?
1.數(shù)據(jù)量的總大小 一個(gè)機(jī)器放不下時(shí)
2.數(shù)據(jù)的索引(B+ Tree)一個(gè)機(jī)器的內(nèi)存放不下時(shí)
3.訪問(wèn)量(讀寫(xiě)混合)一個(gè)實(shí)例不能承受
如果滿足了上述1 or 3個(gè),進(jìn)化......
二、Memcached(緩存)+Mysql+垂直拆分
后來(lái),隨著訪問(wèn)量的上升,幾乎大部分使用MySQL架構(gòu)的網(wǎng)站在數(shù)據(jù)庫(kù)上都開(kāi)始出現(xiàn)了性能問(wèn)題,web程序不再僅僅專注在功能上,同時(shí)也在追求性能。程序員們開(kāi)始大量的使用緩存技術(shù)來(lái)緩解數(shù)據(jù)庫(kù)的壓力,優(yōu)化數(shù)據(jù)庫(kù)的結(jié)構(gòu)和索引。開(kāi)始比較流行的是通過(guò)文件緩存來(lái)緩解數(shù)據(jù)庫(kù)壓力,但是當(dāng)訪問(wèn)量繼續(xù)增大的時(shí)候,多臺(tái)web機(jī)器通過(guò)文件緩存不能共享,大量的小文件緩存也帶了了比較高的IO壓力。在這個(gè)時(shí)候,Memcached就自然的成為一個(gè)非常時(shí)尚的技術(shù)產(chǎn)品。
Memcached作為一個(gè)獨(dú)立的分布式的緩存服務(wù)器,為多個(gè)web服務(wù)器提供了一個(gè)共享的高性能緩存服務(wù),在Memcached服務(wù)器上,又發(fā)展了根據(jù)hash算法來(lái)進(jìn)行多臺(tái)Memcached緩存服務(wù)的擴(kuò)展,然后又出現(xiàn)了一致性hash來(lái)解決增加或減少緩存服務(wù)器導(dǎo)致重新hash帶來(lái)的大量緩存失效的弊端
三、MySql主從復(fù)制讀寫(xiě)分離
由于數(shù)據(jù)庫(kù)的寫(xiě)入壓力增加,Memcached只能緩解數(shù)據(jù)庫(kù)的讀取壓力。讀寫(xiě)集中在一個(gè)數(shù)據(jù)庫(kù)上讓數(shù)據(jù)庫(kù)不堪重負(fù),大部分網(wǎng)站開(kāi)始使用主從復(fù)制技術(shù)來(lái)達(dá)到讀寫(xiě)分離,以提高讀寫(xiě)性能和讀庫(kù)的可擴(kuò)展性。Mysql的master-slave模式成為這個(gè)時(shí)候的網(wǎng)站標(biāo)配了。
四、分庫(kù)分表+水平拆分+Mysql集群
在Memcached的高速緩存,MySQL的主從復(fù)制,讀寫(xiě)分離的基礎(chǔ)之上,這時(shí)MySQL主庫(kù)的寫(xiě)壓力開(kāi)始出現(xiàn)瓶頸,而數(shù)據(jù)量的持續(xù)猛增,由于MyISAM使用表鎖,在高并發(fā)下會(huì)出現(xiàn)嚴(yán)重的鎖問(wèn)題,大量的高并發(fā)MySQL應(yīng)用開(kāi)始使用InnoDB引擎代替MyISAM。
同時(shí),開(kāi)始流行使用分表分庫(kù)來(lái)緩解寫(xiě)壓力和數(shù)據(jù)增長(zhǎng)的擴(kuò)展問(wèn)題。這個(gè)時(shí)候,分表分庫(kù)成了一個(gè)熱門(mén)技術(shù),是面試的熱門(mén)問(wèn)題也是業(yè)界討論的熱門(mén)技術(shù)問(wèn)題。也就在這個(gè)時(shí)候,MySQL推出了還不太穩(wěn)定的表分區(qū),這也給技術(shù)實(shí)力一般的公司帶來(lái)了希望。雖然MySQL推出了MySQL Cluster集群,但性能也不能很好滿足互聯(lián)網(wǎng)的要求,只是在高可靠性上提供了非常大的保證。
五、Mysql的擴(kuò)展性瓶頸
MySQL數(shù)據(jù)庫(kù)也經(jīng)常存儲(chǔ)一些大文本字段,導(dǎo)致數(shù)據(jù)庫(kù)表非常的大,在做數(shù)據(jù)庫(kù)恢復(fù)的時(shí)候就導(dǎo)致非常的慢,不容易快速恢復(fù)數(shù)據(jù)庫(kù)。比如1000萬(wàn)4KB大小的文本就接近40GB的大小,如果能把這些數(shù)據(jù)從MySQL省去,MySQL將變得非常的小。關(guān)系數(shù)據(jù)庫(kù)很強(qiáng)大,但是它并不能很好的應(yīng)付所有的應(yīng)用場(chǎng)景。MySQL的擴(kuò)展性差(需要復(fù)雜的技術(shù)來(lái)實(shí)現(xiàn)),大數(shù)據(jù)下IO壓力大,表結(jié)構(gòu)更改困難,正是當(dāng)前使用MySQL的開(kāi)發(fā)人員面臨的問(wèn)題。
六、為什么用Nosql
今天我們可以通過(guò)第三方平臺(tái)(如:Google,Facebook等)可以很容易的訪問(wèn)和抓取數(shù)據(jù)。用戶的個(gè)人信息,社交網(wǎng)絡(luò),地理位置,用戶生成的數(shù)據(jù)和用戶操作日志已經(jīng)成倍的增加。我們?nèi)绻獙?duì)這些用戶數(shù)據(jù)進(jìn)行挖掘,那SQL數(shù)據(jù)庫(kù)已經(jīng)不適合這些應(yīng)用了, NoSQL數(shù)據(jù)庫(kù)的發(fā)展也卻能很好的處理這些大的數(shù)據(jù)。下面給大家看一下,web應(yīng)用數(shù)據(jù)量的增長(zhǎng)圖:
七、Nosql是什么
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,
泛指非關(guān)系型的數(shù)據(jù)庫(kù)。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫(kù)在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問(wèn)題,而非關(guān)系型的數(shù)據(jù)庫(kù)則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫(kù)的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重?cái)?shù)據(jù)種類帶來(lái)的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲(chǔ)。
(例如谷歌或Facebook每天為他們的用戶收集萬(wàn)億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲(chǔ)不需要固定的模式,無(wú)需多余操作就可以橫向擴(kuò)展。
八、Nosql的優(yōu)勢(shì)
1.易擴(kuò)展
NoSQL數(shù)據(jù)庫(kù)種類繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫(kù)的關(guān)系型特性。
數(shù)據(jù)之間無(wú)關(guān)系,這樣就非常容易擴(kuò)展。也無(wú)形之間,在架構(gòu)的層面上帶來(lái)了可擴(kuò)展的能力。
2.大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫(kù)都具有非常高的讀寫(xiě)性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。
這得益于它的無(wú)關(guān)系性,數(shù)據(jù)庫(kù)的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來(lái)說(shuō)就要性能高很多了。
3.多樣靈活的數(shù)據(jù)模型
NoSQL無(wú)需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫(kù)里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。
九、Nosql數(shù)據(jù)庫(kù)的四大分類
鍵值(Key-Value)存儲(chǔ)
列存儲(chǔ)
文檔存儲(chǔ)
圖形存儲(chǔ)
常見(jiàn)的有:Redis、Memcache、MongoDB,這里就不一 一 介紹了。