真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

SpringCloudGateway中是如何實(shí)現(xiàn)限流功能的

這篇文章主要講解了“Spring Cloud Gateway中是如何實(shí)現(xiàn)限流功能的”,文中的講解內(nèi)容簡單清晰,易于學(xué)習(xí)與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學(xué)習(xí)“Spring Cloud Gateway中是如何實(shí)現(xiàn)限流功能的”吧!

創(chuàng)新互聯(lián)建站專注于企業(yè)成都全網(wǎng)營銷推廣、網(wǎng)站重做改版、賓陽網(wǎng)站定制設(shè)計(jì)、自適應(yīng)品牌網(wǎng)站建設(shè)、H5高端網(wǎng)站建設(shè)、商城建設(shè)、集團(tuán)公司官網(wǎng)建設(shè)、成都外貿(mào)網(wǎng)站建設(shè)公司、高端網(wǎng)站制作、響應(yīng)式網(wǎng)頁設(shè)計(jì)等建站業(yè)務(wù),價(jià)格優(yōu)惠性價(jià)比高,為賓陽等各大城市提供網(wǎng)站開發(fā)制作服務(wù)。

前言

在一個(gè)分布式高并發(fā)的系統(tǒng)設(shè)計(jì)中,限流是一個(gè)不可忽視的功能點(diǎn)。如果不對系統(tǒng)進(jìn)行有效的流量訪問限制,在雙十一和搶票這種流量洪峰的場景下,很容易就會把我們的系統(tǒng)打垮。而作為系統(tǒng)服務(wù)的衛(wèi)兵的網(wǎng)關(guān)組件,作為系統(tǒng)服務(wù)的統(tǒng)一入口,更需要考慮流量的限制,直接在網(wǎng)關(guān)層阻斷流量比在各個(gè)系統(tǒng)中實(shí)現(xiàn)更合適。Spring Cloud Gateway的實(shí)現(xiàn)中,就提供了限流的功能。

回顧限流算法

限流的實(shí)現(xiàn)方式有多種,下面先回顧下幾種常見的實(shí)現(xiàn)算法

計(jì)數(shù)器/時(shí)間窗口法

這種限流算法最簡單,也是最容易實(shí)現(xiàn)的,通過在單位時(shí)間內(nèi)設(shè)置最大訪問數(shù)就可以達(dá)到限流的目的。比如某個(gè)系統(tǒng)能夠承載的一般qps為60,那我們就可以使用計(jì)算器法,在單位時(shí)間一秒內(nèi),限制接口只能被訪問60次即可。但是這個(gè)算法實(shí)現(xiàn),正如其功能描述一樣,有個(gè)缺陷,假如在時(shí)間窗的前1%的時(shí)間內(nèi)流量就達(dá)到頂峰了,那么在時(shí)間窗內(nèi)還有99%的時(shí)間系統(tǒng)即使能夠繼續(xù)提供服務(wù),還是會被限流算法的這種缺陷阻斷在門外,這種缺陷也被稱為“突刺效應(yīng)“

Spring Cloud Gateway中是如何實(shí)現(xiàn)限流功能的

漏桶法

漏桶法不同于計(jì)算器法,它有效的避免了計(jì)數(shù)器法限流的“突刺效應(yīng)”缺陷,實(shí)現(xiàn)也不復(fù)雜,通過固定大小的隊(duì)列+定時(shí)取隊(duì)列元素的方式即可實(shí)現(xiàn)。如其名漏桶,就像一個(gè)盛水的容器,漏桶法只限制容器出水的速率,當(dāng)進(jìn)水的速率過大時(shí),將會填滿容器造成溢出,溢出部分的流量也就是拒絕的流量。比如,容器大小為100,出水速率為每秒10/s,當(dāng)桶為空時(shí),最大的流量可以到達(dá)100/s,但是即使這樣,受限于固定的流出速率,后端處理的也只能是最大每秒10個(gè),其余的流量都會被緩沖在漏桶中。這個(gè)也這是漏桶法的缺陷,沒法真正處理突發(fā)的流量洪峰,效率不高。

Spring Cloud Gateway中是如何實(shí)現(xiàn)限流功能的

令牌桶法

令牌桶法也是基于桶的原型,但是和漏桶算法截然不同的時(shí),沒有出水口。令牌桶通過令牌的產(chǎn)生速率+令牌桶的容積來控制流量,有效的解決了漏桶效率不高的問題。如,容積為100的桶,令牌產(chǎn)生速率為50/s,那么就代表當(dāng)桶中令牌已滿的時(shí)候,最大能夠承載100的流量,后面如果流量一直居高不下,也會以每秒50個(gè)流量的速度恒速處理請求。令牌桶的這種特性有效的處理了洪峰流量也能做到不被洪峰壓垮,是目前限流比較常見的實(shí)現(xiàn)方法。比較著名的實(shí)現(xiàn)有谷歌guava中的RateLimiter。然后下面將要分析的Spring Cloud Gateway中也是使用的令牌桶算法實(shí)現(xiàn)的限流

guava的文檔:https://github.com/google/guava/wiki

Spring Cloud Gateway中是如何實(shí)現(xiàn)限流功能的

Spring Cloud Gateway中的令牌桶

Spring網(wǎng)關(guān)中是基于令牌桶+redis實(shí)現(xiàn)的網(wǎng)關(guān)分布式限流,具體的實(shí)現(xiàn)見下面兩個(gè)代碼:

lua腳本地址:resources/META-INF/scripts/request_rate_limiter.lua

RedisRateLimiter:gateway/filter/ratelimit/RedisRateLimiter.java

try {
			Listkeys = getKeys(id);

			// The arguments to the LUA script. time() returns unixtime in seconds.
			ListscriptArgs = Arrays.asList(replenishRate + "",
					burstCapacity + "", Instant.now().getEpochSecond() + "", "1");
			// allowed, tokens_left = redis.eval(SCRIPT, keys, args)
			Fluxflux = this.redisTemplate.execute(this.script, keys,
					scriptArgs);
			// .log("redisratelimiter", Level.FINER);
			return flux.onErrorResume(throwable -> Flux.just(Arrays.asList(1L, -1L)))
					.reduce(new ArrayList(), (longs, l) -> {
						longs.addAll(l);
						return longs;
					}).map(results -> {
						boolean allowed = results.get(0) == 1L;
						Long tokensLeft = results.get(1);

						Response response = new Response(allowed,
								getHeaders(routeConfig, tokensLeft));

						if (log.isDebugEnabled()) {
							log.debug("response: " + response);
						}
						return response;
					});
		}

上面博主截取了Spring網(wǎng)關(guān)限流部分的關(guān)鍵代碼,可以看到,最關(guān)鍵的地方在于,使用reids執(zhí)行了一段lua腳本,然后通過返回值【0】是否等于1來判斷本次流量是否通過,返回值【1】為令牌桶中剩余的令牌數(shù)。就上面這段代碼沒有看到任何令牌桶算法的影子對吧,所有的精華實(shí)現(xiàn)都在lua腳本里面,這個(gè)腳本最初是由Paul Tarjan分享出來的,源碼地址戳我。腳本如下:

local tokens_key = KEYS[1]
local timestamp_key = KEYS[2]

local rate = tonumber(ARGV[1])
local capacity = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local requested = tonumber(ARGV[4])

local fill_time = capacity/rate
local ttl = math.floor(fill_time*2)

local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
  last_tokens = capacity
end

local last_refreshed = tonumber(redis.call("get", timestamp_key))
if last_refreshed == nil then
  last_refreshed = 0
end

local delta = math.max(0, now-last_refreshed)
local filled_tokens = math.min(capacity, last_tokens+(delta*rate))
local allowed = filled_tokens >= requested
local new_tokens = filled_tokens
local allowed_num = 0
if allowed then
  new_tokens = filled_tokens - requested
  allowed_num = 1
end

redis.call("setex", tokens_key, ttl, new_tokens)
redis.call("setex", timestamp_key, ttl, now)

return { allowed_num, new_tokens }

感謝各位的閱讀,以上就是“Spring Cloud Gateway中是如何實(shí)現(xiàn)限流功能的”的內(nèi)容了,經(jīng)過本文的學(xué)習(xí)后,相信大家對Spring Cloud Gateway中是如何實(shí)現(xiàn)限流功能的這一問題有了更深刻的體會,具體使用情況還需要大家實(shí)踐驗(yàn)證。這里是創(chuàng)新互聯(lián),小編將為大家推送更多相關(guān)知識點(diǎn)的文章,歡迎關(guān)注!


新聞名稱:SpringCloudGateway中是如何實(shí)現(xiàn)限流功能的
文章轉(zhuǎn)載:http://weahome.cn/article/gdppgi.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部