真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Python中怎么實現(xiàn)一個面部識別功能

這篇文章給大家介紹Python中怎么實現(xiàn)一個面部識別功能,內(nèi)容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。

10年的興隆臺網(wǎng)站建設(shè)經(jīng)驗,針對設(shè)計、前端、開發(fā)、售后、文案、推廣等六對一服務(wù),響應(yīng)快,48小時及時工作處理。成都全網(wǎng)營銷的優(yōu)勢是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動調(diào)整興隆臺建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計,從而大程度地提升瀏覽體驗。創(chuàng)新互聯(lián)從事“興隆臺網(wǎng)站設(shè)計”,“興隆臺網(wǎng)站推廣”以來,每個客戶項目都認真落實執(zhí)行。

使用Haar人臉特征分類器

用以下圖像為例:

Python中怎么實現(xiàn)一個面部識別功能

來看看識別這張圖片中的人臉代碼:

import cv2               group_of_people_image = cv2.imread('images/image7.jpg')        frontal_face_classifier = cv2.CascadeClassifier('classifier/haarcascade_frontalface_default.xml')        image_in_gray_scale = cv2.cvtColor(group_of_people_image,cv2.COLOR_BGR2GRAY)               faces = frontal_face_classifier.detectMultiScale(image=image_in_gray_scale,scaleFactor=1.3, minNeighbors=6)               for (x_axis, y_axis, weight,height) in faces:            cv2.rectangle(group_of_people_image,(x_axis, y_axis), (x_axis + weight, y_axis + height), (255, 0, 0), 2)

該算法將圖像轉(zhuǎn)換為灰度圖像,如前所述,這是分類器操作的一個基本步驟,然后我們使用dectedMultiScale函數(shù)搜索圖像中的人臉,并通過繪制矩形來顯示圖像的位置,當(dāng)定位人臉時結(jié)果如下:

Python中怎么實現(xiàn)一個面部識別功能

我們能夠準確地分析兩張出現(xiàn)的臉(采用矩形的方式將人臉框起來),有兩個人完全正面地露出他們的臉,人臉完全顯現(xiàn),所以我們可以清楚地看到他的臉;另一個人只露出了面部的一部分,所以我們沒有得到準確的信息來確認這是一張完整的人臉。

面部特征檢測

Dlib是一個擁有一些分類器的庫,可以幫助我們檢測人臉的某些部分,例如:眼睛、眉毛、鼻子和洋娃娃的區(qū)域。以下圖為例:

Python中怎么實現(xiàn)一個面部識別功能

現(xiàn)在,使用算法來識別圖像中的面部特征點:

import cv2        import dlib        import numpy as np               initial_image = cv2.imread('images/image9.jpg')        initial_image_in_rgb = cv2.cvtColor(initial_image,cv2.COLOR_BGR2RGB)        reference_image = initial_image_in_rgb.copy()               classifier_path = dlib.shape_predictor('classifier/shape_predictor_68_face_landmarks.dat')        frontal_face_detector = dlib.get_frontal_face_detector()               rectangles =frontal_face_detector(initial_image,1)               for k, d inenumerate(rectangles):            cv2.rectangle(reference_image,(d.left(), d.top()), (d.right(), d.bottom()), (255, 255, 0), 2)               landmarks = []               for rectangle in rectangles:            landmarks.append(np.matrix([[p.x, p.y] for p inclassifier_path(reference_image,rectangle).parts()]))               for landmark in landmarks:            for index, point inenumerate(landmark):                point_center = (point[0, 0], point[0, 1])                cv2.circle(reference_image,point_center, 3, (255, 255, 0), -1)                cv2.putText(reference_image,str(index), point_center, cv2.FONT_HERSHEY_COMPLEX, 3, (255, 255, 255), 2)

我們使用的是人臉68個特征分類器,它試圖更精確地理解點面,這給了我們更多的選擇去分析結(jié)果,其缺點是速度有點慢。所以必須劃定一個矩形來確定我們的臉可能在哪里,特征是我們可以識別的人臉特征,包括臉、嘴、眼睛、眉毛。

一旦用矩形的方式框出了臉,就可以使用功能部件將這些特征返回,最后將得到一些可視化的東西去生成一個帶有面部點的圖像。結(jié)果是:

Python中怎么實現(xiàn)一個面部識別功能

這些點對于幫助識別表情很重要,例如我們可以識別出這個男孩睜著眼睛,閉著嘴巴。把這看作是一種情緒的表現(xiàn),可以說這個男孩很焦慮。當(dāng)一個人微笑時,它可以幫助理解這種情緒可能表達的是幸福。

關(guān)于Python中怎么實現(xiàn)一個面部識別功能就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學(xué)到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。


網(wǎng)站名稱:Python中怎么實現(xiàn)一個面部識別功能
本文網(wǎng)址:http://weahome.cn/article/gedhgo.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部