本文實例為大家分享了python將兩張圖片生成全景圖片的具體代碼,供大家參考,具體內(nèi)容如下
成都創(chuàng)新互聯(lián)專注骨干網(wǎng)絡服務器租用10年,服務更有保障!服務器租用,溫江服務器托管 成都服務器租用,成都服務器托管,骨干網(wǎng)絡帶寬,享受低延遲,高速訪問。靈活、實現(xiàn)低成本的共享或公網(wǎng)數(shù)據(jù)中心高速帶寬的專屬高性能服務器。1、全景圖片的介紹
全景圖通過廣角的表現(xiàn)手段以及繪畫、相片、視頻、三維模型等形式,盡可能多表現(xiàn)出周圍的環(huán)境。360全景,即通過對專業(yè)相機捕捉整個場景的圖像信息或者使用建模軟件渲染過后的圖片,使用軟件進行圖片拼合,并用專門的播放器進行播放,即將平面照片或者計算機建模圖片變?yōu)?60 度全觀,用于虛擬現(xiàn)實瀏覽,把二維的平面圖模擬成真實的三維空間,呈現(xiàn)給觀賞者。
2、如何實現(xiàn)
2.1、實現(xiàn)原理
主要是利用sift的特征提取與匹配,參考鏈接
2.2、實現(xiàn)代碼
# -*- coding:utf-8 -*- u''' Created on 2019年6月14日 @author: wuluo ''' __author__ = 'wuluo' __version__ = '1.0.0' __company__ = u'重慶交大' __updated__ = '2019-06-14' import numpy as np import cv2 as cv from PIL import Image from matplotlib import pyplot as plt print('cv version: ', cv.__version__) def pinjie(): top, bot, left, right = 100, 100, 0, 500 img1 = cv.imread('G:/2018and2019two/qianrushi/wuluo1.png') cv.imshow("img1", img1) img2 = cv.imread('G:/2018and2019two/qianrushi/wuluo2.png') cv.imshow("img2", img2) srcImg = cv.copyMakeBorder( img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0)) testImg = cv.copyMakeBorder( img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0)) img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY) img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY) sift = cv.xfeatures2d_SIFT().create() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1gray, None) kp2, des2 = sift.detectAndCompute(img2gray, None) # FLANN parameters FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) # Need to draw only good matches, so create a mask matchesMask = [[0, 0] for i in range(len(matches))] good = [] pts1 = [] pts2 = [] # ratio test as per Lowe's paper for i, (m, n) in enumerate(matches): if m.distance < 0.7 * n.distance: good.append(m) pts2.append(kp2[m.trainIdx].pt) pts1.append(kp1[m.queryIdx].pt) matchesMask[i] = [1, 0] draw_params = dict(matchColor=(0, 255, 0), singlePointColor=(255, 0, 0), matchesMask=matchesMask, flags=0) img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray, kp2, matches, None, **draw_params) #plt.imshow(img3, ), plt.show() rows, cols = srcImg.shape[:2] MIN_MATCH_COUNT = 10 if len(good) > MIN_MATCH_COUNT: src_pts = np.float32( [kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2) dst_pts = np.float32( [kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0) warpImg = cv.warpPerspective(testImg, np.array( M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP) for col in range(0, cols): if srcImg[:, col].any() and warpImg[:, col].any(): left = col break for col in range(cols - 1, 0, -1): if srcImg[:, col].any() and warpImg[:, col].any(): right = col break res = np.zeros([rows, cols, 3], np.uint8) for row in range(0, rows): for col in range(0, cols): if not srcImg[row, col].any(): res[row, col] = warpImg[row, col] elif not warpImg[row, col].any(): res[row, col] = srcImg[row, col] else: srcImgLen = float(abs(col - left)) testImgLen = float(abs(col - right)) alpha = srcImgLen / (srcImgLen + testImgLen) res[row, col] = np.clip( srcImg[row, col] * (1 - alpha) + warpImg[row, col] * alpha, 0, 255) # opencv is bgr, matplotlib is rgb res = cv.cvtColor(res, cv.COLOR_BGR2RGB) # show the result plt.figure() plt.imshow(res) plt.show() else: print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT)) matchesMask = None if __name__ == "__main__": pinjie()