這篇文章主要講解了“如何使用KafkaAPI-ProducerAPI”,文中的講解內(nèi)容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“如何使用KafkaAPI-ProducerAPI”吧!
十載專注成都網(wǎng)站制作,成都定制網(wǎng)頁設計,個人網(wǎng)站制作服務,為大家分享網(wǎng)站制作知識、方案,網(wǎng)站設計流程、步驟,成功服務上千家企業(yè)。為您提供網(wǎng)站建設,網(wǎng)站制作,網(wǎng)頁設計及定制高端網(wǎng)站建設服務,專注于成都定制網(wǎng)頁設計,高端網(wǎng)頁制作,對搬家公司等多個領(lǐng)域,擁有豐富的網(wǎng)站營銷經(jīng)驗。
Kafka 的 Producer 發(fā)送消息采用的是異步發(fā)送的方式。在消息發(fā)送的過程中,涉及到了兩個線程——main 線程和 Sender 線程,以及一個線程共享變量——RecordAccumulator。main 線程將消息發(fā)送給 RecordAccumulator, Sender 線程不斷從 RecordAccumulator 中拉取消息發(fā)送到 Kafka broker。
相關(guān)參數(shù):
batch.size: 只有數(shù)據(jù)積累到 batch.size 之后, sender 才會發(fā)送數(shù)據(jù)。
linger.ms: 如果數(shù)據(jù)遲遲未達到 batch.size, sender 等待 linger.time 之后就會發(fā)送數(shù)據(jù)。
org.apache.kafka kafka-clients 2.7.0
需要用到的類:
KafkaProducer:需要創(chuàng)建一個生產(chǎn)者對象,用來發(fā)送數(shù)據(jù)
ProducerConfig:獲取所需的一系列配置參數(shù)
ProducerRecord:每條數(shù)據(jù)都要封裝成一個 ProducerRecord 對象
import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class MyProducer { public static void main(String[] args) { //生產(chǎn)者配置信息可以從ProducerConfig中取Key //1.創(chuàng)建kafka生產(chǎn)者的配置信息 Properties properties=new Properties(); //2.指定連接的kafka集群 //properties.put("bootstrap.servers","192.168.1.106:9091"); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.1.106:9091"); //3.ACK應答級別 //properties.put("acks","all"); properties.put(ProducerConfig.ACKS_CONFIG,"all"); //4.重試次數(shù) //properties.put("retries",3); properties.put(ProducerConfig.RETRIES_CONFIG,3); //5.批次大小 16k //properties.put("batch.size",16384); properties.put(ProducerConfig.BATCH_SIZE_CONFIG,16384); //6.等待時間 //properties.put("linger.ms",1); properties.put(ProducerConfig.LINGER_MS_CONFIG,1); //7.RecordAccumulator 緩沖區(qū)大小 32M properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432); //properties.put("buffer.memory",33554432); //8.Key,Value 的序列化類 //properties.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //properties.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //9.創(chuàng)建生產(chǎn)者對象 KafkaProducerproducer = new KafkaProducer<>(properties); //10.發(fā)送數(shù)據(jù) for (int i = 0; i < 10; i++) { ProducerRecord producerRecord = new ProducerRecord<>("first","atguigu--"+i); producer.send(producerRecord); } //11.關(guān)閉資源 producer.close(); } }
回調(diào)函數(shù)會在 producer 收到 ack 時調(diào)用,為異步調(diào)用, 該方法有兩個參數(shù),分別是RecordMetadata 和 Exception,如果 Exception 為 null,說明消息發(fā)送成功,如果Exception 不為 null,說明消息發(fā)送失敗。
注意:消息發(fā)送失敗會自動重試,不需要我們在回調(diào)函數(shù)中手動重試。
import org.apache.kafka.clients.producer.*; import java.util.Properties; public class CallBackProducer { public static void main(String[] args) { //生產(chǎn)者配置信息可以從ProducerConfig中取Key Properties properties=new Properties(); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.1.106:9091,192.168.1.106:9092,192.168.1.106:9093"); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //創(chuàng)建生產(chǎn)者對象 KafkaProducerproducer = new KafkaProducer<>(properties); /*創(chuàng)建topic /opt/kafka/kafka03/bin/kafka-topics.sh --create --zookeeper 192.168.1.106:2181,192.168.1.106:2182,192.168.1.106:2183 --replication-factor 3 --partitions 2 --topic aaa * */ //發(fā)送數(shù)據(jù) for (int i = 0; i < 10; i++) { ProducerRecord producerRecord = new ProducerRecord<>("bbb","d","bbb-atguigu++"+i); producer.send(producerRecord, (recordMetadata, e) -> { if (e==null){ System.out.println("aaa "+recordMetadata.partition()+ "--"+recordMetadata.offset()); }else { e.printStackTrace(); } }); } //11.關(guān)閉資源 producer.close(); } }
同步發(fā)送的意思就是,一條消息發(fā)送之后,會阻塞當前線程, 直至返回 ack。由于 send 方法返回的是一個 Future 對象,根據(jù) Futrue 對象的特點,我們也可以實現(xiàn)同步發(fā)送的效果,只需在調(diào)用 Future 對象的 get 方發(fā)即可、
//10.發(fā)送數(shù)據(jù) for (int i = 0; i < 10; i++) { ProducerRecordproducerRecord = new ProducerRecord<>("first","atguigu--"+i); producer.send(producerRecord).get(); }
默認分區(qū)策略源碼:
org.apache.kafka.clients.producer.internals.DefaultPartitioner
import org.apache.kafka.clients.producer.Partitioner; import org.apache.kafka.common.Cluster; import org.apache.kafka.common.PartitionInfo; import java.util.List; import java.util.Map; public class MyPartitioner implements Partitioner { @Override public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { /*自定義分區(qū)規(guī)則*/ ListpartitionInfos = cluster.availablePartitionsForTopic(topic); Integer integer =partitionInfos.size(); return key.toString().hashCode()%integer; /*指定分區(qū)*/ /* return 1;*/ } @Override public void close() { } @Override public void configure(Map map) { } }
//配置方法 properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.zhl.kafkademo.partitioner.MyPartitioner");
完整代碼:
import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class PartitionProducer { public static void main(String[] args) { //生產(chǎn)者配置信息可以從ProducerConfig中取Key Properties properties=new Properties(); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.1.106:9091,192.168.1.106:9092,192.168.1.106:9093"); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //配置分區(qū)器的全類名 partitioner.class properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.zhl.kafkademo.partitioner.MyPartitioner"); //創(chuàng)建生產(chǎn)者對象 KafkaProducerproducer = new KafkaProducer<>(properties); //發(fā)送數(shù)據(jù) for (int i = 0; i < 10; i++) { ProducerRecord producerRecord = new ProducerRecord<>("bbb","d","bbb-atguigu++"+i); producer.send(producerRecord, (recordMetadata, e) -> { if (e==null){ System.out.println(recordMetadata.topic()+"--"+ recordMetadata.partition()+ "--"+recordMetadata.offset()); }else { e.printStackTrace(); } }); } //11.關(guān)閉資源 producer.close(); } }
感謝各位的閱讀,以上就是“如何使用KafkaAPI-ProducerAPI”的內(nèi)容了,經(jīng)過本文的學習后,相信大家對如何使用KafkaAPI-ProducerAPI這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是創(chuàng)新互聯(lián),小編將為大家推送更多相關(guān)知識點的文章,歡迎關(guān)注!