怎么在python中處理圖像二值化?相信很多沒有經(jīng)驗的人對此束手無策,為此本文總結(jié)了問題出現(xiàn)的原因和解決方法,通過這篇文章希望你能解決這個問題。
成都創(chuàng)新互聯(lián)是一家專業(yè)提供遼陽企業(yè)網(wǎng)站建設(shè),專注與網(wǎng)站設(shè)計制作、成都網(wǎng)站建設(shè)、H5網(wǎng)站設(shè)計、小程序制作等業(yè)務(wù)。10年已為遼陽眾多企業(yè)、政府機構(gòu)等服務(wù)。創(chuàng)新互聯(lián)專業(yè)網(wǎng)站建設(shè)公司優(yōu)惠進行中。
Python主要應(yīng)用于:1、Web開發(fā);2、數(shù)據(jù)科學(xué)研究;3、網(wǎng)絡(luò)爬蟲;4、嵌入式應(yīng)用開發(fā);5、游戲開發(fā);6、桌面應(yīng)用開發(fā)。
一、圖像二值化
圖像二值化是指將圖像上像素點的灰度值設(shè)定為0或255,即整個圖像呈現(xiàn)明顯的黑白效果的過程。
二、python圖像二值化處理
1.opencv簡單閾值cv2.threshold
2.opencv自適應(yīng)閾值cv2.adaptiveThreshold
有兩種方法可用于計算自適應(yīng)閾值:mean_c和guassian_c
3.Otsu's二值化
三、示例:
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('scratch.png', 0) # global thresholding ret1, th2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) # Otsu's thresholding th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) # Otsu's thresholding # 閾值一定要設(shè)為 0 ! ret3, th4 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # plot all the images and their histograms images = [img, 0, th2, img, 0, th3, img, 0, th4] titles = [ 'Original Noisy Image', 'Histogram', 'Global Thresholding (v=127)', 'Original Noisy Image', 'Histogram', "Adaptive Thresholding", 'Original Noisy Image', 'Histogram', "Otsu's Thresholding" ] # 這里使用了 pyplot 中畫直方圖的方法, plt.hist, 要注意的是它的參數(shù)是一維數(shù)組 # 所以這里使用了( numpy ) ravel 方法,將多維數(shù)組轉(zhuǎn)換成一維,也可以使用 flatten 方法 # ndarray.flat 1-D iterator over an array. # ndarray.flatten 1-D array copy of the elements of an array in row-major order. for i in range(3): plt.subplot(3, 3, i * 3 + 1), plt.imshow(images[i * 3], 'gray') plt.title(titles[i * 3]), plt.xticks([]), plt.yticks([]) plt.subplot(3, 3, i * 3 + 2), plt.hist(images[i * 3].ravel(), 256) plt.title(titles[i * 3 + 1]), plt.xticks([]), plt.yticks([]) plt.subplot(3, 3, i * 3 + 3), plt.imshow(images[i * 3 + 2], 'gray') plt.title(titles[i * 3 + 2]), plt.xticks([]), plt.yticks([]) plt.show()
看完上述內(nèi)容,你們掌握怎么在python中處理圖像二值化的方法了嗎?如果還想學(xué)到更多技能或想了解更多相關(guān)內(nèi)容,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝各位的閱讀!