真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

這篇文章主要介紹怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境,文中介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們一定要看完!

成都創(chuàng)新互聯(lián)專(zhuān)注于吉縣企業(yè)網(wǎng)站建設(shè),成都響應(yīng)式網(wǎng)站建設(shè)公司,購(gòu)物商城網(wǎng)站建設(shè)。吉縣網(wǎng)站建設(shè)公司,為吉縣等地區(qū)提供建站服務(wù)。全流程按需設(shè)計(jì)網(wǎng)站,專(zhuān)業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,成都創(chuàng)新互聯(lián)專(zhuān)業(yè)和態(tài)度為您提供的服務(wù)

一.IDEA開(kāi)發(fā)環(huán)境

1.pom文件設(shè)置


    1.8
    1.8
    UTF-8
    2.11.12
    2.11
    2.7.6
    1.6.1
  
  
    
      org.scala-lang
      scala-library
      ${scala.version}
    
    
      org.apache.flink
      flink-java
      ${flink.version}
    
    
      org.apache.flink
      flink-streaming-java_${scala.binary.version}
      ${flink.version}
    
    
      org.apache.flink
      flink-scala_${scala.binary.version}
      ${flink.version}
    
    
      org.apache.flink
      flink-streaming-scala_${scala.binary.version}
      ${flink.version}
    
    
      org.apache.flink
      flink-table_${scala.binary.version}
      ${flink.version}
    
    
      org.apache.flink
      flink-clients_${scala.binary.version}
      ${flink.version}
    
    
      org.apache.flink
      flink-connector-kafka-0.10_${scala.binary.version}
      ${flink.version}
    
    
      org.apache.hadoop
      hadoop-client
      ${hadoop.version}
    
    
      MySQL
      mysql-connector-java
      5.1.38
    
    
      com.alibaba
      fastjson
      1.2.22
    
  
  
    src/main/scala
    src/test/scala
    
      
        net.alchim31.maven
        scala-maven-plugin
        3.2.0
        
          
            
              compile
              testCompile
            
            
              
                
                -dependencyfile
                ${project.build.directory}/.scala_dependencies
              
            
          
        
      
      
        org.apache.maven.plugins
        maven-surefire-plugin
        2.18.1
        
          false
          true
          
            **/*Test.*
            **/*Suite.*
          
        
      
      
        org.apache.maven.plugins
        maven-shade-plugin
        3.0.0
        
          
            package
            
              shade
            
            
              
                
                  *:*
                  
                    META-INF/*.SF
                    META-INF/*.DSA
                    META-INF/*.RSA
                  
                
              
              
                
                  org.apache.spark.WordCount
                
              
            
          
        
      
    
  

2.flink開(kāi)發(fā)流程

Flink具有特殊類(lèi)DataSetDataStream在程序中表示數(shù)據(jù)。您可以將它們視為可以包含重復(fù)項(xiàng)的不可變數(shù)據(jù)集合。在DataSet數(shù)據(jù)有限的情況下,對(duì)于一個(gè)DataStream元素的數(shù)量可以是無(wú)界的。

這些集合在某些關(guān)鍵方面與常規(guī)Java集合不同。首先,它們是不可變的,這意味著一旦創(chuàng)建它們就無(wú)法添加或刪除元素。你也不能簡(jiǎn)單地檢查里面的元素。

集合最初通過(guò)在弗林克程序添加源創(chuàng)建和新的集合從這些通過(guò)將它們使用API方法如衍生mapfilter等等。

Flink程序看起來(lái)像是轉(zhuǎn)換數(shù)據(jù)集合的常規(guī)程序。每個(gè)程序包含相同的基本部分:

1.獲取execution environment,

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

2.加載/創(chuàng)建初始化數(shù)據(jù)

DataStream text = env.readTextFile(file:///path/to/file);

3.指定此數(shù)據(jù)的轉(zhuǎn)換

val mapped = input.map { x => x.toInt }

4.指定放置計(jì)算結(jié)果的位置

writeAsText(String path)
print()

5.觸發(fā)程序執(zhí)行

在local模式下執(zhí)行程序

execute()

將程序達(dá)成jar運(yùn)行在線上

./bin/flink run \

-m node21:8081 \

./examples/batch/WordCount.jar \

--input hdfs:///user/admin/input/wc.txt\

--outputhdfs:///user/admin/output2\

二.Wordcount案例

1.Scala代碼

package com.xyg.streaming

import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
/**
 * Author: Mr.Deng
 * Date: 2018/10/15
 * Desc:
 */
object SocketWindowWordCountScala {
 def main(args: Array[String]) : Unit = {
  // 定義一個(gè)數(shù)據(jù)類(lèi)型保存單詞出現(xiàn)的次數(shù)
  case class WordWithCount(word: String, count: Long)
  // port 表示需要連接的端口
  val port: Int = try {
   ParameterTool.fromArgs(args).getInt("port")
  } catch {
   case e: Exception => {
    System.err.println("No port specified. Please run 'SocketWindowWordCount --port '")
    return
   }
  }
  // 獲取運(yùn)行環(huán)境
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
  // 連接此socket獲取輸入數(shù)據(jù)
  val text = env.socketTextStream("node21", port, '\n')
  //需要加上這一行隱式轉(zhuǎn)換 否則在調(diào)用flatmap方法的時(shí)候會(huì)報(bào)錯(cuò)
  import org.apache.flink.api.scala._
  // 解析數(shù)據(jù), 分組, 窗口化, 并且聚合求SUM
  val windowCounts = text
   .flatMap { w => w.split("\\s") }
   .map { w => WordWithCount(w, 1) }
   .keyBy("word")
   .timeWindow(Time.seconds(5), Time.seconds(1))
   .sum("count")
  // 打印輸出并設(shè)置使用一個(gè)并行度
  windowCounts.print().setParallelism(1)
  env.execute("Socket Window WordCount")
 }
}

2.Java代碼

package com.xyg.streaming;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

/**
 * Author: Mr.Deng
 * Date: 2018/10/15
 * Desc: 使用flink對(duì)指定窗口內(nèi)的數(shù)據(jù)進(jìn)行實(shí)時(shí)統(tǒng)計(jì),最終把結(jié)果打印出來(lái)
 *    先在node21機(jī)器上執(zhí)行nc -l 9000
 */
public class StreamingWindowWordCountJava {
  public static void main(String[] args) throws Exception {
  //定義socket的端口號(hào)
  int port;
  try{
    ParameterTool parameterTool = ParameterTool.fromArgs(args);
    port = parameterTool.getInt("port");
  }catch (Exception e){
    System.err.println("沒(méi)有指定port參數(shù),使用默認(rèn)值9000");
    port = 9000;
  }
  //獲取運(yùn)行環(huán)境
  StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
  //連接socket獲取輸入的數(shù)據(jù)
  DataStreamSource text = env.socketTextStream("node21", port, "\n");
  //計(jì)算數(shù)據(jù)
  DataStream windowCount = text.flatMap(new FlatMapFunction() {
    public void flatMap(String value, Collector out) throws Exception {
      String[] splits = value.split("\\s");
      for (String word:splits) {
        out.collect(new WordWithCount(word,1L));
      }
    }
  })//打平操作,把每行的單詞轉(zhuǎn)為類(lèi)型的數(shù)據(jù)
      //針對(duì)相同的word數(shù)據(jù)進(jìn)行分組
      .keyBy("word")
      //指定計(jì)算數(shù)據(jù)的窗口大小和滑動(dòng)窗口大小
      .timeWindow(Time.seconds(2),Time.seconds(1))
      .sum("count");
  //把數(shù)據(jù)打印到控制臺(tái),使用一個(gè)并行度
  windowCount.print().setParallelism(1);
  //注意:因?yàn)閒link是懶加載的,所以必須調(diào)用execute方法,上面的代碼才會(huì)執(zhí)行
  env.execute("streaming word count");
}

  /**
   * 主要為了存儲(chǔ)單詞以及單詞出現(xiàn)的次數(shù)
   */
  public static class WordWithCount{
    public String word;
    public long count;
    public WordWithCount(){}
    public WordWithCount(String word, long count) {
      this.word = word;
      this.count = count;
    }

    @Override
    public String toString() {
      return "WordWithCount{" +
          "word='" + word + '\'' +
          ", count=" + count +
          '}';
    }
  }

}

3.運(yùn)行測(cè)試

首先,使用nc命令啟動(dòng)一個(gè)本地監(jiān)聽(tīng),命令是:

[admin@node21 ~]$ nc -l 9000

通過(guò)netstat命令觀察9000端口。netstat -anlp | grep 9000,啟動(dòng)監(jiān)聽(tīng)如果報(bào)錯(cuò):-bash: nc: command not found,請(qǐng)先安裝nc,在線安裝命令:yum -y install nc。

然后,IDEA上運(yùn)行flink官方案例程序

node21上輸入

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

IDEA控制臺(tái)輸出如下

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

4.集群測(cè)試

這里單機(jī)測(cè)試官方案例

[admin@node21 flink-1.6.1]$ pwd
/opt/flink-1.6.1
[admin@node21 flink-1.6.1]$ ./bin/start-cluster.sh 
Starting cluster.
Starting standalonesession daemon on host node21.
Starting taskexecutor daemon on host node21.
[admin@node21 flink-1.6.1]$ jps
StandaloneSessionClusterEntrypoint
TaskManagerRunner
Jps
[admin@node21 flink-1.6.1]$ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000

程序連接到套接字并等待輸入。您可以檢查Web界面以驗(yàn)證作業(yè)是否按預(yù)期運(yùn)行:

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

單詞在5秒的時(shí)間窗口(處理時(shí)間,翻滾窗口)中計(jì)算并打印到stdout。監(jiān)視TaskManager的輸出文件并寫(xiě)入一些文本nc(輸入在點(diǎn)擊后逐行發(fā)送到Flink):

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

三.使用IDEA開(kāi)發(fā)離線程序

Dataset是flink的常用程序,數(shù)據(jù)集通過(guò)source進(jìn)行初始化,例如讀取文件或者序列化集合,然后通過(guò)transformation(filtering、mapping、joining、grouping)將數(shù)據(jù)集轉(zhuǎn)成,然后通過(guò)sink進(jìn)行存儲(chǔ),既可以寫(xiě)入hdfs這種分布式文件系統(tǒng),也可以打印控制臺(tái),flink可以有很多種運(yùn)行方式,如local、flink集群、yarn等.

1. scala程序

package com.xyg.batch

import org.apache.flink.api.scala.ExecutionEnvironment
import org.apache.flink.api.scala._

/**
 * Author: Mr.Deng
 * Date: 2018/10/19
 * Desc:
 */
object WordCountScala{
 def main(args: Array[String]) {
  //初始化環(huán)境
  val env = ExecutionEnvironment.getExecutionEnvironment
  //從字符串中加載數(shù)據(jù)
  val text = env.fromElements(
   "Who's there?",
   "I think I hear them. Stand, ho! Who's there?")
  //分割字符串、匯總tuple、按照key進(jìn)行分組、統(tǒng)計(jì)分組后word個(gè)數(shù)
  val counts = text.flatMap { _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
   .map { (_, 1) }
   .groupBy(0)
   .sum(1)
  //打印
  counts.print()
 }
}

2. java程序

package com.xyg.batch;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

/**
 * Author: Mr.Deng
 * Date: 2018/10/19
 * Desc:
 */
public class WordCountJava {
  public static void main(String[] args) throws Exception {
    //構(gòu)建環(huán)境
    final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
    //通過(guò)字符串構(gòu)建數(shù)據(jù)集
    DataSet text = env.fromElements(
        "Who's there?",
        "I think I hear them. Stand, ho! Who's there?");
    //分割字符串、按照key進(jìn)行分組、統(tǒng)計(jì)相同的key個(gè)數(shù)
    DataSet> wordCounts = text
        .flatMap(new LineSplitter())
        .groupBy(0)
        .sum(1);
    //打印
    wordCounts.print();
  }
  //分割字符串的方法
  public static class LineSplitter implements FlatMapFunction> {
    @Override
    public void flatMap(String line, Collector> out) {
      for (String word : line.split(" ")) {
        out.collect(new Tuple2(word, 1));
      }
    }
  }
}

3.運(yùn)行

怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境

以上是“怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境”這篇文章的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對(duì)大家有幫助,更多相關(guān)知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!


新聞標(biāo)題:怎么搭建Flink開(kāi)發(fā)IDEA環(huán)境
URL標(biāo)題:http://weahome.cn/article/ghijdg.html

其他資訊

在線咨詢(xún)

微信咨詢(xún)

電話(huà)咨詢(xún)

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部