這期內(nèi)容當(dāng)中小編將會(huì)給大家?guī)?lái)有關(guān)ApacheFlink中Flink數(shù)據(jù)流編程是怎樣的,文章內(nèi)容豐富且以專(zhuān)業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
目前累計(jì)服務(wù)客戶上1000+,積累了豐富的產(chǎn)品開(kāi)發(fā)及服務(wù)經(jīng)驗(yàn)。以網(wǎng)站設(shè)計(jì)水平和技術(shù)實(shí)力,樹(shù)立企業(yè)形象,為客戶提供成都網(wǎng)站設(shè)計(jì)、網(wǎng)站制作、網(wǎng)站策劃、網(wǎng)頁(yè)設(shè)計(jì)、網(wǎng)絡(luò)營(yíng)銷(xiāo)、VI設(shè)計(jì)、網(wǎng)站改版、漏洞修補(bǔ)等服務(wù)。成都創(chuàng)新互聯(lián)公司始終以務(wù)實(shí)、誠(chéng)信為根本,不斷創(chuàng)新和提高建站品質(zhì),通過(guò)對(duì)領(lǐng)先技術(shù)的掌握、對(duì)創(chuàng)意設(shè)計(jì)的研究、對(duì)客戶形象的視覺(jué)傳遞、對(duì)應(yīng)用系統(tǒng)的結(jié)合,為客戶提供更好的一站式互聯(lián)網(wǎng)解決方案,攜手廣大客戶,共同發(fā)展進(jìn)步。
數(shù)據(jù)源可以通過(guò)StreamExecutionEnvironment.addSource(sourceFunction)方式來(lái)創(chuàng)建,F(xiàn)link也提供了一些內(nèi)置的數(shù)據(jù)源方便使用,例如readTextFile(path) readFile(),當(dāng)然,也可以寫(xiě)一個(gè)自定義的數(shù)據(jù)源(可以通過(guò)實(shí)現(xiàn)SourceFunction方法,但是無(wú)法并行執(zhí)行?;蛘邔?shí)現(xiàn)可以并行實(shí)現(xiàn)的接口ParallelSourceFunction或者繼承RichParallelSourceFunction)
首先做一個(gè)簡(jiǎn)單入門(mén),建立一個(gè)DataStreamSourceApp
object DataStreamSourceApp { def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment socketFunction(env) env.execute("DataStreamSourceApp") } def socketFunction(env: StreamExecutionEnvironment): Unit = { val data=env.socketTextStream("192.168.152.45", 9999) data.print() } }
這個(gè)方法將會(huì)從socket中讀取數(shù)據(jù),因此我們需要在192.168.152.45中開(kāi)啟服務(wù):
nc -lk 9999
然后運(yùn)行DataStreamSourceApp,在服務(wù)器上輸入:
iie4bu@swarm-manager:~$ nc -lk 9999 apache flink spark
在控制臺(tái)中也會(huì)輸出:
3> apache 4> flink 1> spark
前面的 341表示的是并行度??梢酝ㄟ^(guò)設(shè)置setParallelism來(lái)操作:
data.print().setParallelism(1)
public class JavaDataStreamSourceApp { public static void main(String[] args) throws Exception { StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); socketFunction(environment); environment.execute("JavaDataStreamSourceApp"); } public static void socketFunction(StreamExecutionEnvironment executionEnvironment){ DataStreamSourcedata = executionEnvironment.socketTextStream("192.168.152.45", 9999); data.print().setParallelism(1); } }
這種方式不能并行處理。
新建一個(gè)自定義數(shù)據(jù)源
class CustomNonParallelSourceFunction extends SourceFunction[Long]{ var count=1L var isRunning = true override def run(ctx: SourceFunction.SourceContext[Long]): Unit = { while (isRunning){ ctx.collect(count) count+=1 Thread.sleep(1000) } } override def cancel(): Unit = { isRunning = false } }
這個(gè)方法首先定義一個(gè)初始值count=1L,然后執(zhí)行的run方法,方法主要是輸出count,并且執(zhí)行加一操作,當(dāng)執(zhí)行cancel方法時(shí)結(jié)束。調(diào)用方法如下:
def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment // socketFunction(env) nonParallelSourceFunction(env) env.execute("DataStreamSourceApp") } def nonParallelSourceFunction(env: StreamExecutionEnvironment): Unit = { val data=env.addSource(new CustomNonParallelSourceFunction()) data.print() }
輸出結(jié)果就是控制臺(tái)一直輸出count值。
無(wú)法設(shè)置并行度,除非設(shè)置并行度是1.
val data=env.addSource(new CustomNonParallelSourceFunction()).setParallelism(3)
那么控制臺(tái)報(bào)錯(cuò):
Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55) at com.vincent.course05.DataStreamSourceApp$.nonParallelSourceFunction(DataStreamSourceApp.scala:16) at com.vincent.course05.DataStreamSourceApp$.main(DataStreamSourceApp.scala:11) at com.vincent.course05.DataStreamSourceApp.main(DataStreamSourceApp.scala)
import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction} class CustomParallelSourceFunction extends ParallelSourceFunction[Long]{ var isRunning = true var count = 1L override def run(ctx: SourceFunction.SourceContext[Long]): Unit = { while(isRunning){ ctx.collect(count) count+=1 Thread.sleep(1000) } } override def cancel(): Unit = { isRunning=false } }
方法的功能跟上面是一樣的。main方法如下:
def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment // socketFunction(env) // nonParallelSourceFunction(env) parallelSourceFunction(env) env.execute("DataStreamSourceApp") } def parallelSourceFunction(env: StreamExecutionEnvironment): Unit = { val data=env.addSource(new CustomParallelSourceFunction()).setParallelism(3) data.print() }
可以設(shè)置并行度3,輸出結(jié)果如下:
2> 1 1> 1 2> 1 2> 2 3> 2 3> 2 3> 3 4> 3 4> 3
class CustomRichParallelSourceFunction extends RichParallelSourceFunction[Long] { var isRunning = true var count = 1L override def run(ctx: SourceFunction.SourceContext[Long]): Unit = { while (isRunning) { ctx.collect(count) count += 1 Thread.sleep(1000) } } override def cancel(): Unit = { isRunning = false } }
def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment // socketFunction(env) // nonParallelSourceFunction(env) // parallelSourceFunction(env) richParallelSourceFunction(env) env.execute("DataStreamSourceApp") } def richParallelSourceFunction(env: StreamExecutionEnvironment): Unit = { val data = env.addSource(new CustomRichParallelSourceFunction()).setParallelism(3) data.print() }
import org.apache.flink.streaming.api.functions.source.SourceFunction; public class JavaCustomNonParallelSourceFunction implements SourceFunction{ boolean isRunning = true; long count = 1; @Override public void run(SourceFunction.SourceContext ctx) throws Exception { while (isRunning) { ctx.collect(count); count+=1; Thread.sleep(1000); } } @Override public void cancel() { isRunning=false; } }
public static void main(String[] args) throws Exception { StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // socketFunction(environment); nonParallelSourceFunction(environment); environment.execute("JavaDataStreamSourceApp"); } public static void nonParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){ DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction()); data.print().setParallelism(1); }
當(dāng)設(shè)置并行度時(shí):
DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction()).setParallelism(2);
那么報(bào)錯(cuò)異常:
Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel source at org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55) at com.vincent.course05.JavaDataStreamSourceApp.nonParallelSourceFunction(JavaDataStreamSourceApp.java:16) at com.vincent.course05.JavaDataStreamSourceApp.main(JavaDataStreamSourceApp.java:10)
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction; public class JavaCustomParallelSourceFunction implements ParallelSourceFunction{ boolean isRunning = true; long count = 1; @Override public void run(SourceContext ctx) throws Exception { while (isRunning) { ctx.collect(count); count+=1; Thread.sleep(1000); } } @Override public void cancel() { isRunning=false; } }
public static void main(String[] args) throws Exception { StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // socketFunction(environment); // nonParallelSourceFunction(environment); parallelSourceFunction(environment); environment.execute("JavaDataStreamSourceApp"); } public static void parallelSourceFunction(StreamExecutionEnvironment executionEnvironment){ DataStreamSource data = executionEnvironment.addSource(new JavaCustomParallelSourceFunction()).setParallelism(2); data.print().setParallelism(1); }
可以設(shè)置并行度,輸出結(jié)果:
1 1 2 2 3 3 4 4 5 5
public class JavaCustomRichParallelSourceFunction extends RichParallelSourceFunction{ boolean isRunning = true; long count = 1; @Override public void run(SourceContext ctx) throws Exception { while (isRunning) { ctx.collect(count); count+=1; Thread.sleep(1000); } } @Override public void cancel() { isRunning=false; } }
public static void main(String[] args) throws Exception { StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // socketFunction(environment); // nonParallelSourceFunction(environment); // parallelSourceFunction(environment); richpParallelSourceFunction(environment); environment.execute("JavaDataStreamSourceApp"); } public static void richpParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){ DataStreamSource data = executionEnvironment.addSource(new JavaCustomRichParallelSourceFunction()).setParallelism(2); data.print().setParallelism(1); }
1 1 2 2 3 3 4 4 5 5 6 6
上述就是小編為大家分享的ApacheFlink中Flink數(shù)據(jù)流編程是怎樣的了,如果剛好有類(lèi)似的疑惑,不妨參照上述分析進(jìn)行理解。如果想知道更多相關(guān)知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。