這篇文章主要介紹了如何使用python實現(xiàn)BP神經(jīng)網(wǎng)絡回歸預測模型,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
成都創(chuàng)新互聯(lián)公司云計算的互聯(lián)網(wǎng)服務提供商,擁有超過13年的服務器租用、資陽移動機房、云服務器、網(wǎng)站空間、網(wǎng)站系統(tǒng)開發(fā)經(jīng)驗,已先后獲得國家工業(yè)和信息化部頒發(fā)的互聯(lián)網(wǎng)數(shù)據(jù)中心業(yè)務許可證。專業(yè)提供云主機、網(wǎng)站空間、空間域名、VPS主機、云服務器、香港云服務器、免備案服務器等。神經(jīng)網(wǎng)絡模型一般用來做分類,回歸預測模型不常見,本文基于一個用來分類的BP神經(jīng)網(wǎng)絡,對它進行修改,實現(xiàn)了一個回歸模型,用來做室內(nèi)定位。模型主要變化是去掉了第三層的非線性轉(zhuǎn)換,或者說把非線性激活函數(shù)Sigmoid換成f(x)=x函數(shù)。這樣做的主要原因是Sigmoid函數(shù)的輸出范圍太小,在0-1之間,而回歸模型的輸出范圍較大。模型修改如下:
代碼如下:
#coding: utf8 '''' author: Huangyuliang ''' import json import random import sys import numpy as np #### Define the quadratic and cross-entropy cost functions class CrossEntropyCost(object): @staticmethod def fn(a, y): return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a))) @staticmethod def delta(z, a, y): return (a-y) #### Main Network class class Network(object): def __init__(self, sizes, cost=CrossEntropyCost): self.num_layers = len(sizes) self.sizes = sizes self.default_weight_initializer() self.cost=cost def default_weight_initializer(self): self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]] self.weights = [np.random.randn(y, x)/np.sqrt(x) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def large_weight_initializer(self): self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases[:-1], self.weights[:-1]): # 前n-1層 a = sigmoid(np.dot(w, a)+b) b = self.biases[-1] # 最后一層 w = self.weights[-1] a = np.dot(w, a)+b return a def SGD(self, training_data, epochs, mini_batch_size, eta, lmbda = 0.0, evaluation_data=None, monitor_evaluation_accuracy=False): # 用隨機梯度下降算法進行訓練 n = len(training_data) for j in xrange(epochs): random.shuffle(training_data) mini_batches = [training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta, lmbda, len(training_data)) print ("Epoch %s training complete" % j) if monitor_evaluation_accuracy: print ("Accuracy on evaluation data: {} / {}".format(self.accuracy(evaluation_data), j)) def update_mini_batch(self, mini_batch, eta, lmbda, n): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the learning rate, ``lmbda`` is the regularization parameter, and ``n`` is the total size of the training data set. """ nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y): """Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. ``nabla_b`` and ``nabla_w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases[:-1], self.weights[:-1]): # 正向傳播 前n-1層 z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) # 最后一層,不用非線性 b = self.biases[-1] w = self.weights[-1] z = np.dot(w, activation)+b zs.append(z) activation = z activations.append(activation) # backward pass 反向傳播 delta = (self.cost).delta(zs[-1], activations[-1], y) # 誤差 Tj - Oj nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # (Tj - Oj) * O(j-1) for l in xrange(2, self.num_layers): z = zs[-l] # w*a + b sp = sigmoid_prime(z) # z * (1-z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp # z*(1-z)*(Err*w) 隱藏層誤差 nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) # Errj * Oi return (nabla_b, nabla_w) def accuracy(self, data): results = [(self.feedforward(x), y) for (x, y) in data] alist=[np.sqrt((x[0][0]-y[0])**2+(x[1][0]-y[1])**2) for (x,y) in results] return np.mean(alist) def save(self, filename): """Save the neural network to the file ``filename``.""" data = {"sizes": self.sizes, "weights": [w.tolist() for w in self.weights], "biases": [b.tolist() for b in self.biases], "cost": str(self.cost.__name__)} f = open(filename, "w") json.dump(data, f) f.close() #### Loading a Network def load(filename): """Load a neural network from the file ``filename``. Returns an instance of Network. """ f = open(filename, "r") data = json.load(f) f.close() cost = getattr(sys.modules[__name__], data["cost"]) net = Network(data["sizes"], cost=cost) net.weights = [np.array(w) for w in data["weights"]] net.biases = [np.array(b) for b in data["biases"]] return net def sigmoid(z): """The sigmoid function.""" return 1.0/(1.0+np.exp(-z)) def sigmoid_prime(z): """Derivative of the sigmoid function.""" return sigmoid(z)*(1-sigmoid(z))
調(diào)用神經(jīng)網(wǎng)絡進行訓練并保存參數(shù):
#coding: utf8 import my_datas_loader_1 import network_0 training_data,test_data = my_datas_loader_1.load_data_wrapper() #### 訓練網(wǎng)絡,保存訓練好的參數(shù) net = network_0.Network([14,100,2],cost = network_0.CrossEntropyCost) net.large_weight_initializer() net.SGD(training_data,1000,316,0.005,lmbda =0.1,evaluation_data=test_data,monitor_evaluation_accuracy=True) filename=r'C:\Users\hyl\Desktop\Second_158\Regression_Model\parameters.txt' net.save(filename)
第190-199輪訓練結(jié)果如下:
調(diào)用保存好的參數(shù),進行定位預測:
#coding: utf8 import my_datas_loader_1 import network_0 import matplotlib.pyplot as plt test_data = my_datas_loader_1.load_test_data() #### 調(diào)用訓練好的網(wǎng)絡,用來進行預測 filename=r'D:\Workspase\Nerual_networks\parameters.txt' ## 文件保存訓練好的參數(shù) net = network_0.load(filename) ## 調(diào)用參數(shù),形成網(wǎng)絡 fig=plt.figure(1) ax=fig.add_subplot(1,1,1) ax.axis("equal") # plt.grid(color='b' , linewidth='0.5' ,linestyle='-') # 添加網(wǎng)格 x=[-0.3,-0.3,-17.1,-17.1,-0.3] ## 這是九樓地形的輪廓 y=[-0.3,26.4,26.4,-0.3,-0.3] m=[1.5,1.5,-18.9,-18.9,1.5] n=[-2.1,28.2,28.2,-2.1,-2.1] ax.plot(x,y,m,n,c='k') for i in range(len(test_data)): pre = net.feedforward(test_data[i][0]) # pre 是預測出的坐標 bx=pre[0] by=pre[1] ax.scatter(bx,by,s=4,lw=2,marker='.',alpha=1) #散點圖 plt.pause(0.001) plt.show()
定位精度達到了1.5米左右。定位效果如下圖所示:
感謝你能夠認真閱讀完這篇文章,希望小編分享的“如何使用python實現(xiàn)BP神經(jīng)網(wǎng)絡回歸預測模型”這篇文章對大家有幫助,同時也希望大家多多支持創(chuàng)新互聯(lián)成都網(wǎng)站設計公司,關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設計公司行業(yè)資訊頻道,更多相關(guān)知識等著你來學習!
另外有需要云服務器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、網(wǎng)站設計器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。