真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Python文本預(yù)處理的方法是什么

本篇內(nèi)容介紹了“Python文本預(yù)處理的方法是什么”的有關(guān)知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!

創(chuàng)新互聯(lián)公司主營二道江網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司,主營網(wǎng)站建設(shè)方案,成都app軟件開發(fā)公司,二道江h(huán)5成都小程序開發(fā)搭建,二道江網(wǎng)站營銷推廣歡迎二道江等地區(qū)企業(yè)咨詢

將文本中出現(xiàn)的字母轉(zhuǎn)化為小寫

示例1:將字母轉(zhuǎn)化為小寫

Python 實現(xiàn)代碼:

input_str = ”The 5 biggest countries by population in 2017 are China, India, United States, Indonesia, and Brazil.”  input_strinput_str = input_str.lower()  print(input_str)

輸出:

the 5 biggest countries by population in 2017 are china, india, united states, indonesia, and brazil.

刪除文本中出現(xiàn)的數(shù)字

如果文本中的數(shù)字與文本分析無關(guān)的話,那就刪除這些數(shù)字。通常,正則化表達(dá)式可以幫助你實現(xiàn)這一過程。

示例2:刪除數(shù)字

Python 實現(xiàn)代碼:     

import re  input_str = ’Box A contains 3 red and 5 white balls, while Box B contains 4 red and 2 blue balls.’  reresult = re.sub(r’\d+’, ‘’, input_str)  print(result)

輸出:

Box A contains red and white balls, while Box B contains red and blue balls.

刪除文本中出現(xiàn)的標(biāo)點(diǎn)

以下示例代碼演示如何刪除文本中的標(biāo)點(diǎn)符號,如 [!”#$%&’()*+,-./:;<=>?@[\]^_`{|}~] 等符號。

示例3:刪除標(biāo)點(diǎn)

Python 實現(xiàn)代碼:

import string  input_str = “This &is [an] example? {of} string. with.? punctuation!!!!” # Sample string  result = input_str.translate(string.maketrans(“”,””), string.punctuation)  print(result)

輸出:

This is an example of string with punctuation

刪除文本中出現(xiàn)的空格

可以通過 strip()函數(shù)移除文本前后出現(xiàn)的空格。

示例4:刪除空格

Python 實現(xiàn)代碼:

input_str = “ \t a string example\t “  input_strinput_str = input_str.strip()  input_str

輸出:

‘a string example’

符號化(Tokenization)

符號化是將給定的文本拆分成每個帶標(biāo)記的小模塊的過程,其中單詞、數(shù)字、標(biāo)點(diǎn)及其他符號等都可視為是一種標(biāo)記。在下表中(Tokenization sheet),羅列出用于實現(xiàn)符號化過程的一些常用工具。

Python文本預(yù)處理的方法是什么

刪除文本中出現(xiàn)的終止詞

終止詞(Stop words) 指的是“a”,“a”,“on”,“is”,“all”等語言中最常見的詞。這些詞語沒什么特別或重要意義,通??梢詮奈谋局袆h除。一般使用 Natural Language Toolkit(NLTK) 來刪除這些終止詞,這是一套專門用于符號和自然語言處理統(tǒng)計的開源庫。

示例7:刪除終止詞

實現(xiàn)代碼:

input_str = “NLTK is a leading platform for building Python programs to work with human language data.”  stop_words = set(stopwords.words(‘english’))  from nltk.tokenize import word_tokenize  tokens = word_tokenize(input_str)  result = [i for i in tokens if not i in stop_words]  print (result)

輸出:

[‘NLTK’, ‘leading’, ‘platform’, ‘building’, ‘Python’, ‘programs’, ‘work’, ‘human’, ‘language’, ‘data’, ‘.’]

此外,scikit-learn 也提供了一個用于處理終止詞的工具:   

from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS

同樣,spaCy 也有一個類似的處理工具:

from spacy.lang.en.stop_words import STOP_WORDS

刪除文本中出現(xiàn)的稀疏詞和特定詞

在某些情況下,有必要刪除文本中出現(xiàn)的一些稀疏術(shù)語或特定詞??紤]到任何單詞都可以被認(rèn)為是一組終止詞,因此可以通過終止詞刪除工具來實現(xiàn)這一目標(biāo)。

詞干提?。⊿temming)

詞干提取是一個將詞語簡化為詞干、詞根或詞形的過程(如 books-book,looked-look)。當(dāng)前主流的兩種算法是 Porter stemming 算法(刪除單詞中刪除常見的形態(tài)和拐點(diǎn)結(jié)尾) 和 Lancaster stemming 算法。

Python文本預(yù)處理的方法是什么

示例 8:使用 NLYK 實現(xiàn)詞干提取

實現(xiàn)代碼:

from nltk.stem import PorterStemmer  from nltk.tokenize import word_tokenize  stemmer= PorterStemmer()  input_str=”There are several types of stemming algorithms.”  input_str=word_tokenize(input_str)  for word in input_str:      print(stemmer.stem(word))

輸出:

There are sever type of stem algorithm.

詞形還原(Lemmatization)

詞形還原的目的,如詞干過程,是將單詞的不同形式還原到一個常見的基礎(chǔ)形式。與詞干提取過程相反,詞形還原并不是簡單地對單詞進(jìn)行切斷或變形,而是通過使用詞匯知識庫來獲得正確的單詞形式。

當(dāng)前常用的詞形還原工具庫包括: NLTK(WordNet Lemmatizer),spaCy,TextBlob,Pattern,gensim,Stanford CoreNLP,基于內(nèi)存的淺層解析器(MBSP),Apache OpenNLP,Apache Lucene,文本工程通用架構(gòu)(GATE),Illinois Lemmatizer 和 DKPro Core。

示例 9:使用 NLYK 實現(xiàn)詞形還原

實現(xiàn)代碼:   

from nltk.stem import WordNetLemmatizer  from nltk.tokenize import word_tokenize  lemmatizer=WordNetLemmatizer()  input_str=”been had done languages cities mice”  input_str=word_tokenize(input_str)  for word in input_str:      print(lemmatizer.lemmatize(word))

輸出:

be have do language city mouse

詞性標(biāo)注(POS)

詞性標(biāo)注旨在基于詞語的定義和上下文意義,為給定文本中的每個單詞(如名詞、動詞、形容詞和其他單詞) 分配詞性。當(dāng)前有許多包含 POS 標(biāo)記器的工具,包括 NLTK,spaCy,TextBlob,Pattern,Stanford CoreNLP,基于內(nèi)存的淺層分析器(MBSP),Apache OpenNLP,Apache Lucene,文本工程通用架構(gòu)(GATE),F(xiàn)reeLing,Illinois Part of Speech Tagger 和 DKPro Core。

示例 10:使用 TextBlob 實現(xiàn)詞性標(biāo)注

實現(xiàn)代碼:

input_str=”Parts of speech examples: an article, to write, interesting, easily, and, of”  from textblob import TextBlob  result = TextBlob(input_str)  print(result.tags)

輸出:

[(‘Parts’, u’NNS’), (‘of’, u’IN’), (‘speech’, u’NN’), (‘examples’, u’NNS’), (‘an’, u’DT’), (‘article’, u’NN’), (‘to’, u’TO’), (‘write’, u’VB’), (‘interesting’, u’VBG’), (‘easily’, u’RB’), (‘and’, u’CC’), (‘of’, u’IN’)]

詞語分塊(淺解析)

詞語分塊是一種識別句子中的組成部分(如名詞、動詞、形容詞等),并將它們鏈接到具有不連續(xù)語法意義的高階單元(如名詞組或短語、動詞組等) 的自然語言過程。常用的詞語分塊工具包括:NLTK,TreeTagger chunker,Apache OpenNLP,文本工程通用架構(gòu)(GATE),F(xiàn)reeLing。

示例 11:使用 NLYK 實現(xiàn)詞語分塊

第一步需要確定每個單詞的詞性。

實現(xiàn)代碼:

input_str=”A black television and a white stove were bought for the new apartment of John.”  from textblob import TextBlob  result = TextBlob(input_str)  print(result.tags)

輸出:

[(‘A’, u’DT’), (‘black’, u’JJ’), (‘television’, u’NN’), (‘and’, u’CC’), (‘a’, u’DT’), (‘white’, u’JJ’), (‘stove’, u’NN’), (‘were’, u’VBD’), (‘bought’, u’VBN’), (‘for’, u’IN’), (‘the’, u’DT’), (‘new’, u’JJ’), (‘apartment’, u’NN’), (‘of’, u’IN’), (‘John’, u’NNP’)]

二部就是進(jìn)行詞語分塊

實現(xiàn)代碼:

reg_exp = “NP: {
?*}”  rp = nltk.RegexpParser(reg_exp)  result = rp.parse(result.tags) print(result)

輸出:

(S (NP A/DT black/JJ television/NN) and/CC (NP a/DT white/JJ stove/NN) were/VBD bought/VBN for/IN (NP the/DT new/JJ apartment/NN)  of/IN John/NNP)

也可以通過 result.draw() 函數(shù)繪制句子樹結(jié)構(gòu)圖,如下圖所示。   

Python文本預(yù)處理的方法是什么

命名實體識別(Named Entity Recognition)

命名實體識別(NER) 旨在從文本中找到命名實體,并將它們劃分到事先預(yù)定義的類別(人員、地點(diǎn)、組織、時間等)。

常見的命名實體識別工具如下表所示,包括:NLTK,spaCy,文本工程通用架構(gòu)(GATE) -- ANNIE,Apache OpenNLP,Stanford CoreNLP,DKPro核心,MITIE,Watson NLP,TextRazor,F(xiàn)reeLing 等。

Python文本預(yù)處理的方法是什么

示例 12:使用 TextBlob 實現(xiàn)詞性標(biāo)注

實現(xiàn)代碼:

from nltk import word_tokenize, pos_tag, ne_chunk  input_str = “Bill works for Apple so he went to Boston for a conference.”  print ne_chunk(pos_tag(word_tokenize(input_str)))

輸出:

(S (PERSON Bill/NNP) works/VBZ for/IN Apple/NNP so/IN he/PRP went/VBD to/TO (GPE Boston/NNP) for/IN a/DT conference/NN ./.)

共指解析 Coreference resolution(回指分辨率 anaphora resolution)

代詞和其他引用表達(dá)應(yīng)該與正確的個體聯(lián)系起來。Coreference resolution 在文本中指的是引用真實世界中的同一個實體。如在句子 “安德魯說他會買車”中,代詞“他”指的是同一個人,即“安德魯”。常用的 Coreference resolution 工具如下表所示,包括 Stanford CoreNLP,spaCy,Open Calais,Apache OpenNLP 等。

Python文本預(yù)處理的方法是什么

搭配提取(Collocation extraction)

搭配提取過程并不是單獨(dú)、偶然發(fā)生的,它是與單詞組合一同發(fā)生的過程。該過程的示例包括“打破規(guī)則 break the rules”,“空閑時間 free time”,“得出結(jié)論 draw a conclusion”,“記住 keep in mind”,“準(zhǔn)備好 get ready”等。

Python文本預(yù)處理的方法是什么

示例 13:使用 ICE 實現(xiàn)搭配提取

實現(xiàn)代碼:

input=[“he and Chazz duel with all keys on the line.”]  from ICE import CollocationExtractor extractor = CollocationExtractor.with_collocation_pipeline(“T1” , bing_key = “Temp”,pos_check = False)  print(extractor.get_collocations_of_length(input, length = 3))

輸出:

[“on the line”]

關(guān)系提取(Relationship extraction)

關(guān)系提取過程是指從非結(jié)構(gòu)化的數(shù)據(jù)源 (如原始文本)獲取結(jié)構(gòu)化的文本信息。嚴(yán)格來說,它確定了命名實體(如人、組織、地點(diǎn)的實體) 之間的關(guān)系(如配偶、就業(yè)等關(guān)系)。例如,從“昨天與 Mark 和 Emily 結(jié)婚”這句話中,我們可以提取到的信息是 Mark 是 Emily 的丈夫。 

“Python文本預(yù)處理的方法是什么”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識可以關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實用文章!


網(wǎng)站名稱:Python文本預(yù)處理的方法是什么
當(dāng)前鏈接:http://weahome.cn/article/gjpcsi.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部