真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化

今天就跟大家聊聊有關(guān)Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。

東昌網(wǎng)站制作公司哪家好,找創(chuàng)新互聯(lián)!從網(wǎng)頁設(shè)計(jì)、網(wǎng)站建設(shè)、微信開發(fā)、APP開發(fā)、成都響應(yīng)式網(wǎng)站建設(shè)公司等網(wǎng)站項(xiàng)目制作,到程序開發(fā),運(yùn)營維護(hù)。創(chuàng)新互聯(lián)成立與2013年到現(xiàn)在10年的時(shí)間,我們擁有了豐富的建站經(jīng)驗(yàn)和運(yùn)維經(jīng)驗(yàn),來保證我們的工作的順利進(jìn)行。專注于網(wǎng)站建設(shè)就選創(chuàng)新互聯(lián)

熱力圖

熱力圖(Heat Map)是數(shù)據(jù)的一種矩陣表示方法,其中每個(gè)矩陣元素的值通過一種顏色表示。不同的顏色代表不同的值,通過矩陣的索引將需要被對比的兩項(xiàng)或兩個(gè)特征關(guān)聯(lián)在一起。熱力圖非常適合于展示多個(gè)特征變量之間的關(guān)系,因?yàn)槟憧梢灾苯油ㄟ^顏色知道該位置上的矩陣元素的大小。通過查看熱力圖中的其他點(diǎn),你還可以看到每種關(guān)系與數(shù)據(jù)集中的其它關(guān)系之間的比較。顏色是如此直觀,因此它為我們提供了一種非常簡單的數(shù)據(jù)解釋方式。

Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化

現(xiàn)在讓我們來看看實(shí)現(xiàn)代碼。與「matplotlib」相比,「seaborn」可以被用于繪制更加高級的圖形,它通常需要更多的組件,例如多種顏色、圖形或變量?!竚atplotlib」可以被用于顯示圖形,「NumPy」可被用于生成數(shù)據(jù),「pandas」可以被用于處理數(shù)據(jù)!繪圖只是「seaborn」的一個(gè)簡單的功能。

# Importing libs  import seaborn as sns  import pandas as pd  import numpy as np  import matplotlib.pyplot as plt  # Create a random dataset  data = pd.DataFrame(np.random.random((10,6)), columns=["Iron Man","Captain America","Black Widow","Thor","Hulk", "Hawkeye"])  print(data)  # Plot the heatmap  heatmap_plot = sns.heatmap(data, center=0, cmap='gist_ncar')  plt.show()

二維密度圖

二維密度圖(2D Density Plot)是一維版本密度圖的直觀擴(kuò)展,相對于一維版本,其優(yōu)點(diǎn)是能夠看到關(guān)于兩個(gè)變量的概率分布。例如,在下面的二維密度圖中,右邊的刻度圖用顏色表示每個(gè)點(diǎn)的概率。我們的數(shù)據(jù)出現(xiàn)概率最大的地方(也就是數(shù)據(jù)點(diǎn)最集中的地方),似乎在 size=0.5,speed=1.4 左右。正如你現(xiàn)在所知道的,二維密度圖對于迅速找出我們的數(shù)據(jù)在兩個(gè)變量的情況下最集中的區(qū)域非常有用,而不是像一維密度圖那樣只有一個(gè)變量。當(dāng)你有兩個(gè)對輸出非常重要的變量,并且希望了解它們?nèi)绾喂餐饔糜谳敵龅姆植紩r(shí),用二維密度圖觀察數(shù)據(jù)是十分有效的。

Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化

事實(shí)再次證明,使用「seaborn」編寫代碼是十分便捷的!這一次,我們將創(chuàng)建一個(gè)偏態(tài)分布,讓數(shù)據(jù)可視化結(jié)果更有趣。你可以對大多數(shù)可選參數(shù)進(jìn)行調(diào)整,讓可視化看結(jié)果看起來更清楚。

# Importing libs  import seaborn as sns  import matplotlib.pyplot as plt  from scipy.stats import skewnorm  # Create the data  speed = skewnorm.rvs(4, size=50)   size = skewnorm.rvs(4, size=50)  # Create and shor the 2D Density plot  ax = sns.kdeplot(speed, size, cmap="Reds", shade=False, bw=.15, cbar=True)  ax.set(xlabel='speed', ylabel='size')  plt.show()

蜘蛛網(wǎng)圖

蜘蛛網(wǎng)圖(Spider Plot)是顯示一對多關(guān)系的最佳方法之一。換而言之,你可以繪制并查看多個(gè)與某個(gè)變量或類別相關(guān)的變量的值。在蜘蛛網(wǎng)圖中,一個(gè)變量相對于另一個(gè)變量的顯著性是清晰而明顯的,因?yàn)樵谔囟ǖ姆较蛏?,覆蓋的面積和距離中心的長度變得更大。如果你想看看利用這些變量描述的幾個(gè)不同類別的對象有何不同,可以將它們并排繪制。在下面的圖表中,我們很容易比較復(fù)仇者聯(lián)盟的不同屬性,并看到他們各自的優(yōu)勢所在!(請注意,這些數(shù)據(jù)是隨機(jī)設(shè)置的,我對復(fù)仇者聯(lián)盟的成員們沒有偏見。)

Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化

在這里,我們可以直接使用「matplotlib」而非「seaborn」來創(chuàng)建可視化結(jié)果。我們需要讓每個(gè)屬性沿圓周等距分布。我們將在每個(gè)角上設(shè)置標(biāo)簽,然后將值繪制為一個(gè)點(diǎn),它到中心的距離取決于它的值/大小。最后,為了顯示更清晰,我們將使用半透明的顏色來填充將屬性點(diǎn)連接起來得到的線條所包圍的區(qū)域。

# Import libs  import pandas as pd  import seaborn as sns  import numpy as np  import matplotlib.pyplot as plt  # Get the data  df=pd.read_csv("avengers_data.csv")  print(df)  """     #             Name  Attack  Defense  Speed  Range  Health  0  1         Iron Man      83       80     75     70      70  1  2  Captain America      60       62     63     80      80  2  3             Thor      80       82     83    100     100  3  3             Hulk      80      100     67     44      92  4  4      Black Widow      52       43     60     50      65  5  5          Hawkeye      58       64     58     80      65  """  # Get the data for Iron Man  labels=np.array(["Attack","Defense","Speed","Range","Health"])  stats=df.loc[0,labels].values  # Make some calculations for the plot  angles=np.linspace(0, 2*np.pi, len(labels), endpoint=False)  stats=np.concatenate((stats,[stats[0]]))  angles=np.concatenate((angles,[angles[0]]))  # Plot stuff  fig = plt.figure()  ax = fig.add_subplot(111, polar=True)  ax.plot(angles, stats, 'o-', linewidth=2)  ax.fill(angles, stats, alpha=0.25)  ax.set_thetagrids(angles * 180/np.pi, labels)  ax.set_title([df.loc[0,"Name"]])  ax.grid(True)  plt.show()

樹狀圖

我們從小學(xué)就開始使用樹狀圖(Tree Diagram)了!樹狀圖是自然而直觀的,這使它們?nèi)菀妆唤忉?。直接相連的節(jié)點(diǎn)關(guān)系密切,而具有多個(gè)連接的節(jié)點(diǎn)則不太相似。在下面的可視化結(jié)果中,我根據(jù) Kaggle 的統(tǒng)計(jì)數(shù)據(jù)(生命值、攻擊力、防御力、特殊攻擊、特殊防御、速度)繪制了一小部分口袋妖怪游戲的數(shù)據(jù)集的樹狀圖。

因此,統(tǒng)計(jì)意義上最匹配的口袋妖怪將被緊密地連接在一起。例如,在圖的頂部,阿柏怪 和尖嘴鳥是直接連接的,如果我們查看數(shù)據(jù),阿柏怪的總分為 438,尖嘴鳥則為 442,二者非常接近!但是如果我們看看拉達(dá),我們可以看到其總得分為 413,這和阿柏怪、尖嘴鳥就具有較大差別了,所以它們在樹狀圖中是被分開的!當(dāng)我們沿著樹往上移動(dòng)時(shí),綠色組的口袋妖怪彼此之間比它們和紅色組中的任何口袋妖怪都更相似,即使這里并沒有直接的綠色的連接。

Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化

對于樹狀圖,我們實(shí)際上需要使用「Scipy」來繪制!讀取數(shù)據(jù)集中的數(shù)據(jù)之后,我們將刪除字符串列。這么做只是為了使可視化結(jié)果更加直觀、便于理解,但在實(shí)踐中,將這些字符串轉(zhuǎn)換為分類變量會(huì)得到更好的結(jié)果和對比效果。我們還設(shè)置了數(shù)據(jù)幀的索引,以便能夠恰當(dāng)?shù)貙⑵溆米饕妹總€(gè)節(jié)點(diǎn)的列。最后需要告訴大家的是,在「Scipy」中計(jì)算和繪制樹狀圖只需要一行簡單的代碼。

# Import libs  import pandas as pd  from matplotlib import pyplot as plt  from scipy.cluster import hierarchy  import numpy as np  # Read in the dataset  # Drop any fields that are strings  # Only get the first 40 because this dataset is big  df = pd.read_csv('Pokemon.csv')  dfdf = df.set_index('Name')  del df.index.name  dfdf = df.drop(["Type 1", "Type 2", "Legendary"], axis=1)  dfdf = df.head(n=40)  # Calculate the distance between each sample  Z = hierarchy.linkage(df, 'ward')  # Orientation our tree  hierarchy.dendrogram(Z, orientation="left", labels=df.index)  plt.show()

看完上述內(nèi)容,你們對Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化有進(jìn)一步的了解嗎?如果還想了解更多知識或者相關(guān)內(nèi)容,請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝大家的支持。


網(wǎng)頁題目:Python中如何實(shí)現(xiàn)數(shù)據(jù)可視化
文章起源:http://weahome.cn/article/gocepd.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部