利用python 如何在圖片中性別人物的識(shí)別?相信很多沒(méi)有經(jīng)驗(yàn)的人對(duì)此束手無(wú)策,為此本文總結(jié)了問(wèn)題出現(xiàn)的原因和解決方法,通過(guò)這篇文章希望你能解決這個(gè)問(wèn)題。
創(chuàng)新互聯(lián)建站憑借在網(wǎng)站建設(shè)、網(wǎng)站推廣領(lǐng)域領(lǐng)先的技術(shù)能力和多年的行業(yè)經(jīng)驗(yàn),為客戶提供超值的營(yíng)銷(xiāo)型網(wǎng)站建設(shè)服務(wù),我們始終認(rèn)為:好的營(yíng)銷(xiāo)型網(wǎng)站就是好的業(yè)務(wù)員。我們已成功為企業(yè)單位、個(gè)人等客戶提供了做網(wǎng)站、網(wǎng)站建設(shè)服務(wù),以良好的商業(yè)信譽(yù),完善的服務(wù)及深厚的技術(shù)力量處于同行領(lǐng)先地位。使用keras實(shí)現(xiàn)性別識(shí)別,模型數(shù)據(jù)使用的是oarriaga/face_classification的模型
實(shí)現(xiàn)效果
準(zhǔn)備工作
在開(kāi)始之前先要安裝keras和tensorflow
安裝keras使用命令:pip3 install keras
安裝tensorflow使用命令:pip3 install tensorflow
編碼部分
們使用OpenCV先識(shí)別到人臉,然后在通過(guò)keras識(shí)別性別,具體代碼如下
#coding=utf-8 #性別識(shí)別 import cv2 from keras.models import load_model import numpy as np import ChineseText img = cv2.imread("img/gather.png") face_classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml" ) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(140, 140)) gender_classifier = load_model( "classifier/gender_models/simple_CNN.81-0.96.hdf5") gender_labels = {0: '女', 1: '男'} color = (255, 255, 255) for (x, y, w, h) in faces: face = img[(y - 60):(y + h + 60), (x - 30):(x + w + 30)] face = cv2.resize(face, (48, 48)) face = np.expand_dims(face, 0) face = face / 255.0 gender_label_arg = np.argmax(gender_classifier.predict(face)) gender = gender_labels[gender_label_arg] cv2.rectangle(img, (x, y), (x + h, y + w), color, 2) img = ChineseText.cv2ImgAddText(img, gender, x + h, y, color, 30) cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows()