創(chuàng)新互聯(lián)www.cdcxhl.cn八線動態(tài)BGP香港云服務(wù)器提供商,新人活動買多久送多久,劃算不套路!
站在用戶的角度思考問題,與客戶深入溝通,找到向陽網(wǎng)站設(shè)計與向陽網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗,讓設(shè)計與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個性化、用戶體驗好的作品,建站類型包括:成都網(wǎng)站建設(shè)、成都網(wǎng)站制作、企業(yè)官網(wǎng)、英文網(wǎng)站、手機端網(wǎng)站、網(wǎng)站推廣、域名與空間、雅安服務(wù)器托管、企業(yè)郵箱。業(yè)務(wù)覆蓋向陽地區(qū)。這篇文章主要講解了unity如何實現(xiàn)貼圖矩陣運算,內(nèi)容清晰明了,對此有興趣的小伙伴可以學(xué)習(xí)一下,相信大家閱讀完之后會有幫助。
我們在shader中對貼圖處理時,有時候會有一些比較復(fù)雜的運算,比方說三角函數(shù),開方等,一般情況下,如果可以在越上層做運算,性能會越高。C# > Vertex > fragment
因此,考慮到貼圖的旋轉(zhuǎn)用到的三角函數(shù),可以使用在C#中傳入旋轉(zhuǎn)矩陣得到,然后使用uv直接乘以矩陣就可以了。
封裝了vmatrix4x4,分享一下:
using UnityEngine; namespace D11.Skin { public class VMatrix { public float[,] m; public VMatrix() { m = new float[4, 4]; m[0, 0] = 0.0f; m[0, 1] = 0.0f; m[0, 2] = 0.0f; m[0, 3] = 0.0f; m[1, 0] = 0.0f; m[1, 1] = 0.0f; m[1, 2] = 0.0f; m[1, 3] = 0.0f; m[2, 0] = 0.0f; m[2, 1] = 0.0f; m[2, 2] = 0.0f; m[2, 3] = 0.0f; m[3, 0] = 0.0f; m[3, 1] = 0.0f; m[3, 2] = 0.0f; m[3, 3] = 0.0f; } public static void MatrixSetIdentity(VMatrix matrix) { matrix.m[0,0] = 1.0f; matrix.m[0,1] = 0.0f; matrix.m[0,2] = 0.0f; matrix.m[0,3] = 0.0f; matrix.m[1,0] = 0.0f; matrix.m[1,1] = 1.0f; matrix.m[1,2] = 0.0f; matrix.m[1,3] = 0.0f; matrix.m[2,0] = 0.0f; matrix.m[2,1] = 0.0f; matrix.m[2,2] = 1.0f; matrix.m[2,3] = 0.0f; matrix.m[3,0] = 0.0f; matrix.m[3,1] = 0.0f; matrix.m[3,2] = 0.0f; matrix.m[3,3] = 1.0f; } public static void MatrixBuildTranslation(VMatrix matrix, float x, float y, float z) { MatrixSetIdentity(matrix); matrix.m[0,3] = x; matrix.m[1,3] = y; matrix.m[2,3] = z; } public static void MatrixBuildTranslation(VMatrix matrix, Vector3 vec) { MatrixSetIdentity(matrix); matrix.m[0, 3] = vec.x; matrix.m[1, 3] = vec.y; matrix.m[2, 3] = vec.z; } public static void MatrixBuildScale(VMatrix matrix, float x, float y, float z) { matrix.m[0, 0] = x; matrix.m[0, 1] = 0.0f; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f; matrix.m[1, 0] = 0.0f; matrix.m[1, 1] = y; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f; matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = z; matrix.m[2, 3] = 0.0f; matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f; } public static void MatrixBuildScale(VMatrix matrix, Vector3 scale) { MatrixBuildScale(matrix, scale.x, scale.y, scale.z); } public static void MatrixBuildRotate(VMatrix matrix, float angleDegrees) { float radians = angleDegrees * (Mathf.PI / 180.0f); float fSin = Mathf.Sin(radians); float fCos = Mathf.Cos(radians); matrix.m[0, 0] = fCos; matrix.m[0, 1] = -fSin; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f; matrix.m[1, 0] = fSin; matrix.m[1, 1] = fCos; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f; matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = 1.0f; matrix.m[2, 3] = 0.0f; matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f; } public static VMatrix MatrixMultiply(VMatrix src1, VMatrix src2) { VMatrix dst = new VMatrix(); dst.m[0,0] = src1.m[0,0] * src2.m[0,0] + src1.m[0,1] * src2.m[1,0] + src1.m[0,2] * src2.m[2,0] + src1.m[0,3] * src2.m[3,0]; dst.m[0,1] = src1.m[0,0] * src2.m[0,1] + src1.m[0,1] * src2.m[1,1] + src1.m[0,2] * src2.m[2,1] + src1.m[0,3] * src2.m[3,1]; dst.m[0,2] = src1.m[0,0] * src2.m[0,2] + src1.m[0,1] * src2.m[1,2] + src1.m[0,2] * src2.m[2,2] + src1.m[0,3] * src2.m[3,2]; dst.m[0,3] = src1.m[0,0] * src2.m[0,3] + src1.m[0,1] * src2.m[1,3] + src1.m[0,2] * src2.m[2,3] + src1.m[0,3] * src2.m[3,3]; dst.m[1,0] = src1.m[1,0] * src2.m[0,0] + src1.m[1,1] * src2.m[1,0] + src1.m[1,2] * src2.m[2,0] + src1.m[1,3] * src2.m[3,0]; dst.m[1,1] = src1.m[1,0] * src2.m[0,1] + src1.m[1,1] * src2.m[1,1] + src1.m[1,2] * src2.m[2,1] + src1.m[1,3] * src2.m[3,1]; dst.m[1,2] = src1.m[1,0] * src2.m[0,2] + src1.m[1,1] * src2.m[1,2] + src1.m[1,2] * src2.m[2,2] + src1.m[1,3] * src2.m[3,2]; dst.m[1,3] = src1.m[1,0] * src2.m[0,3] + src1.m[1,1] * src2.m[1,3] + src1.m[1,2] * src2.m[2,3] + src1.m[1,3] * src2.m[3,3]; dst.m[2,0] = src1.m[2,0] * src2.m[0,0] + src1.m[2,1] * src2.m[1,0] + src1.m[2,2] * src2.m[2,0] + src1.m[2,3] * src2.m[3,0]; dst.m[2,1] = src1.m[2,0] * src2.m[0,1] + src1.m[2,1] * src2.m[1,1] + src1.m[2,2] * src2.m[2,1] + src1.m[2,3] * src2.m[3,1]; dst.m[2,2] = src1.m[2,0] * src2.m[0,2] + src1.m[2,1] * src2.m[1,2] + src1.m[2,2] * src2.m[2,2] + src1.m[2,3] * src2.m[3,2]; dst.m[2,3] = src1.m[2,0] * src2.m[0,3] + src1.m[2,1] * src2.m[1,3] + src1.m[2,2] * src2.m[2,3] + src1.m[2,3] * src2.m[3,3]; dst.m[3,0] = src1.m[3,0] * src2.m[0,0] + src1.m[3,1] * src2.m[1,0] + src1.m[3,2] * src2.m[2,0] + src1.m[3,3] * src2.m[3,0]; dst.m[3,1] = src1.m[3,0] * src2.m[0,1] + src1.m[3,1] * src2.m[1,1] + src1.m[3,2] * src2.m[2,1] + src1.m[3,3] * src2.m[3,1]; dst.m[3,2] = src1.m[3,0] * src2.m[0,2] + src1.m[3,1] * src2.m[1,2] + src1.m[3,2] * src2.m[2,2] + src1.m[3,3] * src2.m[3,2]; dst.m[3,3] = src1.m[3,0] * src2.m[0,3] + src1.m[3,1] * src2.m[1,3] + src1.m[3,2] * src2.m[2,3] + src1.m[3,3] * src2.m[3,3]; return dst; } public Vector4 MatrixGetCol(int nCol) { System.Diagnostics.Debug.Assert((nCol >= 0) && (nCol <= 3)); Vector4 vec; vec.x = m[0,nCol]; vec.y = m[1,nCol]; vec.z = m[2,nCol]; vec.w = m[3,nCol]; return vec; } public Vector4 MatrixGetRow(int nRow) { System.Diagnostics.Debug.Assert((nRow >= 0) && (nRow <= 3)); Vector4 vec; vec.x = m[nRow, 0]; vec.y = m[nRow, 1]; vec.z = m[nRow, 2]; vec.w = m[nRow, 3]; return vec; } public static VMatrix GetSRTMatrix(Vector2 scale, float rotation, Vector2 center, Vector2 translation) { VMatrix mat = new VMatrix(); VMatrix temp = new VMatrix(); MatrixBuildScale(mat, scale.x, scale.y, 1.0f); MatrixBuildTranslation(temp, -center); mat = MatrixMultiply(temp, mat); MatrixBuildRotate(temp, rotation); mat = MatrixMultiply(temp, mat); MatrixBuildTranslation(temp, center.x + translation.x, center.y - translation.y, 0.0f); mat = MatrixMultiply(temp, mat); return mat; } } }