紅黑樹是一棵二叉搜索樹,它在每個節(jié)點上增加了一個存儲位來表示節(jié)點的顏色,可以是Red或Black。通過對任何一條從根到葉子簡單路徑上的顏色來約束,紅黑樹保證最長路徑不超過最短路徑的兩倍,因而近似于平衡。
創(chuàng)新互聯(lián)建站總部坐落于成都市區(qū),致力網(wǎng)站建設(shè)服務(wù)有成都網(wǎng)站建設(shè)、網(wǎng)站設(shè)計、網(wǎng)絡(luò)營銷策劃、網(wǎng)頁設(shè)計、網(wǎng)站維護(hù)、公眾號搭建、小程序開發(fā)、軟件開發(fā)等為企業(yè)提供一整套的信息化建設(shè)解決方案。創(chuàng)造真正意義上的網(wǎng)站建設(shè),為互聯(lián)網(wǎng)品牌在互動行銷領(lǐng)域創(chuàng)造價值而不懈努力!
紅黑樹是滿足下面紅黑性質(zhì)的二叉搜索樹
每個節(jié)點,不是紅色就是黑色的
根節(jié)點是黑色的
如果一個節(jié)點是紅色的,則它的兩個子節(jié)點是黑色的(沒有連續(xù)的紅節(jié)點)
對每個節(jié)點,從該節(jié)點到其所有后代葉節(jié)點的簡單路徑上,均包含相同數(shù)目的黑色節(jié)點。(每條路徑的黑色節(jié)點的數(shù)量相等)
每個葉子節(jié)點都是黑色的(這里的葉子節(jié)點是指的NIL節(jié)點(空節(jié)點))
#includeusing namespace std; enum COL { RED, BLACK }; template struct RBTreeNode { K _key; V _val; RBTreeNode * _left; RBTreeNode * _right; RBTreeNode * _parent; COL _col; RBTreeNode(K& key, V& val) :_key(key) , _val(val) , _left(NULL) , _right(NULL) , _parent(NULL) , _col(RED) {} }; template class RBTree{ typedef RBTreeNode Node; public: RBTree() :_root(NULL) {} bool Insert(K& key, V& val) { if (_root == NULL) { _root = new Node(key, val); } else { Node* parent = NULL; Node* cur = _root; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key>key) { parent = cur; cur = cur->_left; } else { return false; } } cur = new Node(key, val); if (parent->_key < key) parent->_right = cur; else parent->_left = cur; cur->_parent = parent; //符合紅黑樹規(guī)范 while (cur != _root&&parent->_col == RED) { Node* grandfather = parent->_parent; if (grandfather->_left == parent) { Node* uncle = grandfather->_right; if (uncle&&uncle->_col == RED)//1. { parent->_col = uncle->_col=BLACK; grandfather->_col = RED; //繼續(xù)往上調(diào) cur = grandfather; parent = cur->_parent; } else { if (cur == parent->_right) { RotateL(parent); swap(parent, cur);//*左旋后,指針位置yibian } parent->_col = BLACK; grandfather->_col = RED; RotateR(grandfather); break; } } else//反的情況 { Node* uncle = grandfather->_left; if (uncle&&uncle->_col == RED) { parent->_col = uncle->_col = BLACK; grandfather->_col = RED; //繼續(xù)往上調(diào) cur = grandfather; parent = cur->_parent; } else { if (cur == parent->_left) { RotateR(parent); swap(cur, parent); } parent->_col = BLACK; grandfather->_col = RED; RotateL(grandfather); break; } } } } _root->_col = BLACK; return true; } Node* Find(const K& key) { Node* cur = _root; while (cur) { if (cur->_key < key) cur = cur->_right; else if (cur->_key>key) cur = cur->_left; else return cur; } return NULL; } bool Remove(const K& key) { } bool isBalance() { if (_root == NULL) return true; if (_root->_col == RED) return false; int k = 0; Node* cur = _root; while (cur) { if (cur->_col==BLACK) ++k; cur = cur->_left; } int count = 0; return _IsBalance(_root, k, count); } void InOrder() { _InOrder(_root); } protected: void _InOrder(Node* root) { if (root == NULL) return; _InOrder(root->_left); cout << root->_key << " "; // cout << root->_key << "color"< _col << " "; _InOrder(root->_right); } bool _IsBalance(Node* root, const int k, int count) { if (root == NULL) return true; if (root->_col == RED) { if (root->_parent->_col == RED) { cout << "顏色不正確" << root->_key << endl; return false; } } else ++count; if (root->_left == NULL&&root->_right == NULL) { if (count == k) return true; else { cout << "黑色節(jié)點個數(shù)不對" << root->_key< _left, k, count) && _IsBalance(root->_right, k, count); } void RotateL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; parent->_right = subRL; if (subRL) subRL->_parent = parent; Node* ppNode = parent->_parent; subR->_left = parent; parent->_parent = subR; if (ppNode == NULL) { subR->_parent = NULL; _root = subR; } else { if (ppNode->_left == parent) { ppNode->_left = subR; } else { ppNode->_right = subR; } subR->_parent = ppNode; } } void RotateR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; parent->_left = subLR; if (subLR) subLR->_parent = parent; Node* ppNode = parent->_parent; subL->_right = parent; parent->_parent = subL; if (ppNode == NULL) { subL->_parent = NULL; _root = subL; } else { if (ppNode->_left == parent) { ppNode->_left = subL; } else { ppNode->_right = subL; } subL->_parent = ppNode; } } private: Node* _root; }; void Test1() { RBTree t; int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 }; for (int i = 0; i < sizeof(a) / sizeof(a[0]); ++i) { t.Insert(a[i], i); } t.InOrder(); t.isBalance(); } #include"RBtree.h" int main() { Test1(); system("pause"); return 0; }