真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網站制作重慶分公司

怎樣使用sbt構建spark的項目

本篇文章為大家展示了怎樣使用sbt構建spark的項目,內容簡明扼要并且容易理解,絕對能使你眼前一亮,通過這篇文章的詳細介紹希望你能有所收獲。

創(chuàng)新互聯(lián)專業(yè)為企業(yè)提供紅塔網站建設、紅塔做網站、紅塔網站設計、紅塔網站制作等企業(yè)網站建設、網頁設計與制作、紅塔企業(yè)網站模板建站服務,十載紅塔做網站經驗,不只是建網站,更提供有價值的思路和整體網絡服務。

用Intellij 構建sbt項目  scala 使用2.10.4

name := "gstorm"

version := "1.0"



version := "1.0"

//Older Scala Version
scalaVersion := "2.10.4"

val overrideScalaVersion = "2.11.8"
val sparkVersion = "2.0.0"
val sparkXMLVersion = "0.3.3"
val sparkCsvVersion = "1.4.0"
val sparkElasticVersion = "2.3.4"
val sscKafkaVersion = "2.0.1"
val sparkMongoVersion = "1.0.0"
val sparkCassandraVersion = "1.6.0"

//Override Scala Version to the above 2.11.8 version
ivyScala := ivyScala.value map {
  _.copy(overrideScalaVersion = true)
}

resolvers ++= Seq(
  "All Spark Repository -> bintray-spark-packages" at "https://dl.bintray.com/spark-packages/maven/"
)

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion exclude("jline", "2.12"),
  "org.apache.spark" %% "spark-sql" % sparkVersion excludeAll(ExclusionRule(organization = "jline"), ExclusionRule("name", "2.12")),
  "org.apache.spark" %% "spark-hive" % sparkVersion,
  "org.apache.spark" %% "spark-yarn" % sparkVersion,
  "com.databricks" %% "spark-xml" % sparkXMLVersion,
  "com.databricks" %% "spark-csv" % sparkCsvVersion,
  "org.apache.spark" %% "spark-graphx" % sparkVersion,
  "org.apache.spark" %% "spark-catalyst" % sparkVersion,
  "org.apache.spark" %% "spark-streaming" % sparkVersion,
  //  "com.101tec"           % "zkclient"         % "0.9",
  "org.elasticsearch" %% "elasticsearch-spark" % sparkElasticVersion,
  //  "org.apache.spark" %% "spark-streaming-kafka-0-10_2.11" % sscKafkaVersion,
  "org.MongoDB.spark" % "mongo-spark-connector_2.11" % sparkMongoVersion,
  "com.stratio.datasource" % "spark-mongodb_2.10" % "0.11.1",
  "dibbhatt" % "kafka-spark-consumer" % "1.0.8",
  "net.liftweb" %% "lift-webkit" % "2.6.2"
)

WordCount.scala

import org.apache.spark.sql.SparkSession

object WordCount {

  def main(args: Array[String]): Unit = {

    val spark = SparkSession
      .builder()
      .appName("Spark SQL Example")
      .master("local[2]")
      .config("spark.sql.codegen.WordCount", "true")
      .getOrCreate()

    val sc = spark.sparkContext
    val textFile = sc.textFile("hdfs://hadoop:9000/words.txt")
    val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
    wordCounts.collect.foreach(println)
  }
}

上述內容就是怎樣使用sbt構建spark的項目,你們學到知識或技能了嗎?如果還想學到更多技能或者豐富自己的知識儲備,歡迎關注創(chuàng)新互聯(lián)行業(yè)資訊頻道。


當前名稱:怎樣使用sbt構建spark的項目
網頁網址:http://weahome.cn/article/gseood.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部