Kubernetes 集群本身不提供日志收集的解決方案,一般來(lái)說(shuō)有主要的3種方案來(lái)做日志收集:
1、在每個(gè)節(jié)點(diǎn)上運(yùn)行一個(gè) agent 來(lái)收集日志
由于這種 agent 必須在每個(gè)節(jié)點(diǎn)上運(yùn)行,所以直接使用 DaemonSet 控制器運(yùn)行該應(yīng)用程序即可
這種方法也僅僅適用于收集輸出到 stdout 和 stderr 的應(yīng)用程序日志
簡(jiǎn)單來(lái)說(shuō),本方式就是在每個(gè)node上各運(yùn)行一個(gè)日志代理容器,
對(duì)本節(jié)點(diǎn)/var/log和 /var/lib/docker/containers/兩個(gè)目錄下的日志進(jìn)行采集
2、在每個(gè) Pod 中包含一個(gè) sidecar 容器來(lái)收集應(yīng)用日志
在 sidecar 容器中運(yùn)行日志采集代理程序會(huì)導(dǎo)致大量資源消耗,因?yàn)槟阌卸嗌賯€(gè)要采集的 Pod,就需要運(yùn)行多少個(gè)采集代理程序,另外還無(wú)法使用 kubectl logs 命令來(lái)訪問(wèn)這些日志
3、直接在應(yīng)用程序中將日志信息推送到采集后端
常熟網(wǎng)站制作公司哪家好,找成都創(chuàng)新互聯(lián)公司!從網(wǎng)頁(yè)設(shè)計(jì)、網(wǎng)站建設(shè)、微信開(kāi)發(fā)、APP開(kāi)發(fā)、響應(yīng)式網(wǎng)站設(shè)計(jì)等網(wǎng)站項(xiàng)目制作,到程序開(kāi)發(fā),運(yùn)營(yíng)維護(hù)。成都創(chuàng)新互聯(lián)公司公司2013年成立到現(xiàn)在10年的時(shí)間,我們擁有了豐富的建站經(jīng)驗(yàn)和運(yùn)維經(jīng)驗(yàn),來(lái)保證我們的工作的順利進(jìn)行。專注于網(wǎng)站建設(shè)就選成都創(chuàng)新互聯(lián)公司。
Kubernetes 中比較流行的日志收集解決方案是 Elasticsearch、Fluentd 和 Kibana(EFK)技術(shù)棧,也是官方現(xiàn)在比較推薦的一種方案
Elasticsearch 是一個(gè)實(shí)時(shí)的、分布式的可擴(kuò)展的搜索引擎,允許進(jìn)行全文、結(jié)構(gòu)化搜索,它通常用于索引和搜索大量日志數(shù)據(jù),也可用于搜索許多不同類型的文檔
創(chuàng)建 Elasticsearch 集群
一般使用3個(gè) Elasticsearch Pod 來(lái)避免高可用下多節(jié)點(diǎn)集群中出現(xiàn)的“腦裂”問(wèn)題,并且使用StatefulSet控制器來(lái)創(chuàng)建Elasticsearch Pod
創(chuàng)建StatefulSet pod時(shí),直接在其pvc模板中使用StorageClass自動(dòng)生成pv和pvc,可以實(shí)現(xiàn)數(shù)據(jù)持久化,nfs-client-provisioner已經(jīng)提前準(zhǔn)備好了。
1、創(chuàng)建獨(dú)立的命名空間
apiVersion: v1
kind: Namespace
metadata:
name: logging
2、創(chuàng)建StorageClas,也可以使用已經(jīng)存在的StorageClas
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: es-data-db
provisioner: fuseim.pri/ifs # 該值需要和 provisioner 配置的保持一致
3、創(chuàng)建StatefulSet pod前需要先創(chuàng)建無(wú)頭服務(wù)
kind: Service
apiVersion: v1
metadata:
name: elasticsearch
namespace: logging
labels:
app: elasticsearch
spec:
selector:
app: elasticsearch
clusterIP: None
ports:
- port: 9200
name: rest
- port: 9300
name: inter-node
4、創(chuàng)建elasticsearch statefulset pod
$ docker pull docker.elastic.co/elasticsearch/elasticsearch-oss:6.4.3
$ docker pull busybox
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: es-cluster
namespace: logging
spec:
serviceName: elasticsearch
replicas: 3
selector:
matchLabels:
app: elasticsearch
template:
metadata:
labels:
app: elasticsearch
spec:
containers:
- name: elasticsearch
image: docker.io/elasticsearch:latest
resources:
limits:
cpu: 1000m
requests:
cpu: 100m
ports:
- containerPort: 9200
name: rest
protocol: TCP
- containerPort: 9300
name: inter-node
protocol: TCP
volumeMounts:
- name: data
mountPath: /usr/share/elasticsearch/data
env:
- name: cluster.name
value: k8s-logs
- name: node.name
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: discovery.zen.ping.unicast.hosts
value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
- name: discovery.zen.minimum_master_nodes
value: "2"
- name: ES_JAVA_OPTS
value: "-Xms512m -Xmx512m"
initContainers:
- name: fix-permissions
image: busybox
command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
securityContext:
privileged: true
volumeMounts:
- name: data
mountPath: /usr/share/elasticsearch/data
- name: increase-vm-max-map
image: busybox
command: ["sysctl", "-w", "vm.max_map_count=262144"]
securityContext:
privileged: true
- name: increase-fd-ulimit
image: busybox
command: ["sh", "-c", "ulimit -n 65536"]
securityContext:
privileged: true
volumeClaimTemplates:
- metadata:
name: data
labels:
app: elasticsearch
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: es-data-db
resources:
requests:
storage: 100Gi
$ kubectl get pod -n logging
NAME READY STATUS RESTARTS AGE
es-cluster-0 1/1 Running 0 42s
es-cluster-1 1/1 Running 0 10m
es-cluster-2 1/1 Running 0 9m49s
在nfs服務(wù)器上會(huì)自動(dòng)生成3個(gè)目錄,用于這3個(gè)pod存儲(chǔ)數(shù)據(jù)
$ cd /data/k8s
$ ls
logging-data-es-cluster-0-pvc-98c87fc5-c581-11e9-964d-000c29d8512b/
logging-data-es-cluster-1-pvc-07872570-c590-11e9-964d-000c29d8512b/
logging-data-es-cluster-2-pvc-27e15977-c590-11e9-964d-000c29d8512b/
檢查es集群狀態(tài)
$ kubectl port-forward es-cluster-0 9200:9200 --namespace=logging
在另外一個(gè)窗口執(zhí)行
$ curl http://localhost:9200/_cluster/state?pretty
用deployment控制器創(chuàng)建kibana
apiVersion: v1
kind: Service
metadata:
name: kibana
namespace: logging
labels:
app: kibana
spec:
ports:
- port: 5601
type: NodePort
selector:
app: kibana
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kibana
namespace: logging
labels:
app: kibana
spec:
selector:
matchLabels:
app: kibana
template:
metadata:
labels:
app: kibana
spec:
containers:
- name: kibana
image: docker.elastic.co/kibana/kibana-oss:6.4.3
resources:
limits:
cpu: 1000m
requests:
cpu: 100m
env:
- name: ELASTICSEARCH_URL
value: http://elasticsearch:9200
ports:
- containerPort: 5601
$ kubectl get svc -n logging |grep kibana
kibana NodePort 10.111.239.0
訪問(wèn)kibana
http://192.168.1.243:32081
安裝配置 Fluentd
1、通過(guò) ConfigMap 對(duì)象來(lái)指定 Fluentd 配置文件
kind: ConfigMap
apiVersion: v1
metadata:
name: fluentd-config
namespace: logging
labels:
addonmanager.kubernetes.io/mode: Reconcile
data:
system.conf: |-
root_dir /tmp/fluentd-buffers/
containers.input.conf: |-
@id raw.kubernetes
@type detect_exceptions
remove_tag_prefix raw
message log
stream stream
multiline_flush_interval 5
max_bytes 500000
max_lines 1000
system.input.conf: |-
forward.input.conf: |-
output.conf: |-
@type kubernetes_metadata
@id elasticsearch
@type elasticsearch
@log_level info
include_tag_key true
host elasticsearch
port 9200
logstash_format true
request_timeout 30s
@type file
path /var/log/fluentd-buffers/kubernetes.system.buffer
flush_mode interval
retry_type exponential_backoff
flush_thread_count 2
flush_interval 5s
retry_forever
retry_max_interval 30
chunk_limit_size 2M
queue_limit_length 8
overflow_action block
上面配置文件中我們配置了 docker 容器日志目錄以及 docker、kubelet 應(yīng)用的日志的收集,收集到數(shù)據(jù)經(jīng)過(guò)處理后發(fā)送到 elasticsearch:9200 服務(wù)
2、使用DaemonSet創(chuàng)建fluentd pod
$ docker pull cnych/fluentd-elasticsearch:v2.0.4
$ docker info
Docker Root Dir: /var/lib/docker
apiVersion: v1
kind: ServiceAccount
metadata:
name: fluentd-es
namespace: logging
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
- ""
resources:
- "namespaces"
- "pods"
verbs:
- "get"
- "watch"
- "list"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
name: fluentd-es
namespace: logging
apiGroup: ""
roleRef:
kind: ClusterRole
name: fluentd-es
apiGroup: ""
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: fluentd-es
namespace: logging
labels:
k8s-app: fluentd-es
version: v2.0.4
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
spec:
selector:
matchLabels:
k8s-app: fluentd-es
version: v2.0.4
template:
metadata:
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
version: v2.0.4
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ''
spec:
serviceAccountName: fluentd-es
containers:
- name: fluentd-es
image: cnych/fluentd-elasticsearch:v2.0.4
env:
- name: FLUENTD_ARGS
value: --no-supervisor -q
resources:
limits:
memory: 500Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
- name: config-volume
mountPath: /etc/fluent/config.d
nodeSelector:
beta.kubernetes.io/fluentd-ds-ready: "true"
tolerations:
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule
terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers
- name: config-volume
configMap:
name: fluentd-config
可以搜集/var/log和/var/log/containers和/var/lib/docker/containers內(nèi)的日志
還可以搜集docker服務(wù)和kubelet服務(wù)的日志
為了能夠靈活控制哪些節(jié)點(diǎn)的日志可以被收集,所以我們這里還添加了一個(gè) nodSelector 屬性
nodeSelector:
beta.kubernetes.io/fluentd-ds-ready: "true"
所以要給所有節(jié)點(diǎn)打標(biāo)簽:
$ kubectl get node
$ kubectl label nodes server243.example.com beta.kubernetes.io/fluentd-ds-ready=true
$ kubectl get nodes --show-labels
由于我們的集群使用的是 kubeadm 搭建的,默認(rèn)情況下 master 節(jié)點(diǎn)有污點(diǎn),所以要想也收集 master 節(jié)點(diǎn)的日志,則需要添加上容忍
tolerations:
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule
$ kubectl get pod -n logging
NAME READY STATUS RESTARTS AGE
es-cluster-0 1/1 Running 0 10h
es-cluster-1 1/1 Running 0 10h
es-cluster-2 1/1 Running 0 10h
fluentd-es-rf6p6 1/1 Running 0 9h
fluentd-es-s99r2 1/1 Running 0 9h
fluentd-es-snmtt 1/1 Running 0 9h
kibana-bd6f49775-qsxb2 1/1 Running 0 11h
3、在kibana上配置
http://192.168.1.243:32081
Create index pattern----第一步輸入logstash-*,第二步選擇@timestamp
4、創(chuàng)建測(cè)試pod,在kibana上查看日志
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox
args: [/bin/sh, -c,
'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done']
回到 Kibana Dashboard 頁(yè)面,在上面的Discover頁(yè)面搜索欄中輸入kubernetes.pod_name:counter