真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

10.sparksql之快速入門

前世今生

Hive&Shark

??隨著大數(shù)據(jù)時代的來臨,Hadoop風(fēng)靡一時。為了使熟悉RDBMS但又不理解MapReduce的技術(shù)人員快速進行大數(shù)據(jù)開發(fā),Hive應(yīng)運而生。Hive是當時唯一運行在Hadoop上的SQL-on-Hadoop工具。

10余年建站經(jīng)驗, 成都網(wǎng)站設(shè)計、網(wǎng)站建設(shè)客戶的見證與正確選擇。成都創(chuàng)新互聯(lián)提供完善的營銷型網(wǎng)頁建站明細報價表。后期開發(fā)更加便捷高效,我們致力于追求更美、更快、更規(guī)范。

??但是MapReduce計算過程中大量的中間磁盤落地過程消耗了大量的I/O,降低的運行效率。為了提高SQL-on-Hadoop的效率,大量的SQL-on-Hadoop工具開始產(chǎn)生,其中表現(xiàn)較為突出的是:

  • MapR的Drill
  • Cloudera的Impala
  • Shark

??Shark是伯克利實驗室Spark生態(tài)的組件之一,它修改了Hive Driver的內(nèi)存管理、物理計劃、執(zhí)行三個模塊,使之能運行在Spark引擎上,從而使得SQL查詢的速度得到10-100倍的提升。

10.spark sql之快速入門

Shark&Spark SQL

??Shark對于Hive的太多依賴(如采用Hive的語法解析器、查詢優(yōu)化器等等),制約了Spark的One Stack Rule Them All的既定方針,制約了Spark各個組件的相互集成,所以提出了SparkSQL項目。

??SparkSQL拋棄原有Shark的代碼,汲取了Shark的一些優(yōu)點,如內(nèi)存列存儲(In-Memory Columnar Storage)、Hive兼容性等,重新開發(fā)了SparkSQL代碼。由于擺脫了對Hive的依賴性,SparkSQL無論在數(shù)據(jù)兼容、性能優(yōu)化、組件擴展方面都得到了極大地提升。

  • 數(shù)據(jù)兼容方面

??不但兼容Hive,還可以從RDD、parquet文件、JSON文件中獲取數(shù)據(jù),也支持獲取RDBMS數(shù)據(jù)以及cassandra等NOSQL數(shù)據(jù)。

  • 性能優(yōu)化方面

??除了采取In-Memory Columnar Storage、byte-code generation等優(yōu)化技術(shù)外,引進Cost Model對查詢進行動態(tài)評估、獲取最佳物理計劃等。

  • 組件擴展方面

??無論是SQL的語法解析器、分析器還是優(yōu)化器都可以重新定義,進行擴展。

??2014年Shark停止開發(fā),團隊將所有資源放SparkSQL項目上,至此,Shark的發(fā)展畫上了句號,但也因此發(fā)展出兩條線:SparkSQL和Hive on Spark。

10.spark sql之快速入門

??其中SparkSQL作為Spark生態(tài)的一員繼續(xù)發(fā)展,而不再受限于Hive,只是兼容Hive;而Hive on Spark是一個Hive的發(fā)展計劃,該計劃將Spark作為Hive的底層引擎之一,也就是說,Hive將不再受限于一個引擎,可以采用Map-Reduce、Tez、Spark等引擎。

簡介

??Spark SQL是一個用于結(jié)構(gòu)化數(shù)據(jù)處理的模塊。Spark SQL賦予待處理數(shù)據(jù)一些結(jié)構(gòu)化信息,可以使用SQL語句或DataSet API接口與Spark SQL進行交互。

  • SQL

??Spark SQL可以使用sql讀寫Hive中的數(shù)據(jù);也可以在編程語言中使用sql,返回Dataset/DataFrame結(jié)果集。

  • DataSets&DataFrames

??Dataset是一個分布式數(shù)據(jù)集,它結(jié)合了RDD與SparkSQL執(zhí)行引擎的優(yōu)點。Dataset可以通過JVM對象構(gòu)造,然后使用算子操作進行處理。Java和Scala都有Dataset API;Python和R本身支持Dataset特性。

??DataFrame是一個二維結(jié)構(gòu)的DataSet,相當于RDBMS中的表。DataFrame可以有多種方式構(gòu)造,比如結(jié)構(gòu)化數(shù)據(jù)文件、hive表、外部數(shù)據(jù)庫、RDD等。在Scala、Java、Python及R中都有DataFrame API。

DataFrame與DataSet

DataFrame創(chuàng)建及操作

  • scala
import org.apache.spark.sql.SparkSession

// 構(gòu)造SparkSession
val spark = SparkSession
  .builder()
  .appName("Spark SQL basic example")
  .config("spark.some.config.option", "some-value")
  .getOrCreate()

// 創(chuàng)建DataFrame
val df = spark.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout
df.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

// DataFrame操作
// This import is needed to use the $-notation
import spark.implicits._
// Print the schema in a tree format
df.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)

// Select only the "name" column
df.select("name").show()
// +-------+
// |   name|
// +-------+
// |Michael|
// |   Andy|
// | Justin|
// +-------+

// Select everybody, but increment the age by 1
df.select($"name", $"age" + 1).show()
// +-------+---------+
// |   name|(age + 1)|
// +-------+---------+
// |Michael|     null|
// |   Andy|       31|
// | Justin|       20|
// +-------+---------+

// Select people older than 21
df.filter($"age" > 21).show()
// +---+----+
// |age|name|
// +---+----+
// | 30|Andy|
// +---+----+

// Count people by age
df.groupBy("age").count().show()
// +----+-----+
// | age|count|
// +----+-----+
// |  19|    1|
// |null|    1|
// |  30|    1|
// +----+-----+
  • java
import org.apache.spark.sql.SparkSession;

//構(gòu)造SparkSession
SparkSession spark = SparkSession
  .builder()
  .appName("Java Spark SQL basic example")
  .config("spark.some.config.option", "some-value")
  .getOrCreate();

//創(chuàng)建DataFrame
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;

Dataset df = spark.read().json("examples/src/main/resources/people.json");

// Displays the content of the DataFrame to stdout
df.show();
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

//DataFrame操作
// col("...") is preferable to df.col("...")
import static org.apache.spark.sql.functions.col;

// Print the schema in a tree format
df.printSchema();
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)

// Select only the "name" column
df.select("name").show();
// +-------+
// |   name|
// +-------+
// |Michael|
// |   Andy|
// | Justin|
// +-------+

// Select everybody, but increment the age by 1
df.select(col("name"), col("age").plus(1)).show();
// +-------+---------+
// |   name|(age + 1)|
// +-------+---------+
// |Michael|     null|
// |   Andy|       31|
// | Justin|       20|
// +-------+---------+

// Select people older than 21
df.filter(col("age").gt(21)).show();
// +---+----+
// |age|name|
// +---+----+
// | 30|Andy|
// +---+----+

// Count people by age
df.groupBy("age").count().show();
// +----+-----+
// | age|count|
// +----+-----+
// |  19|    1|
// |null|    1|
// |  30|    1|
// +----+-----+
  • python
from pyspark.sql import SparkSession

# 構(gòu)造SparkSession
spark = SparkSession \
    .builder \
    .appName("Python Spark SQL basic example") \
    .config("spark.some.config.option", "some-value") \
    .getOrCreate()

# 創(chuàng)建DataFrame
# spark is an existing SparkSession
df = spark.read.json("examples/src/main/resources/people.json")
# Displays the content of the DataFrame to stdout
df.show()
# +----+-------+
# | age|   name|
# +----+-------+
# |null|Michael|
# |  30|   Andy|
# |  19| Justin|
# +----+-------+

# DataFrame操作
# spark, df are from the previous example
# Print the schema in a tree format
df.printSchema()
# root
# |-- age: long (nullable = true)
# |-- name: string (nullable = true)

# Select only the "name" column
df.select("name").show()
# +-------+
# |   name|
# +-------+
# |Michael|
# |   Andy|
# | Justin|
# +-------+

# Select everybody, but increment the age by 1
df.select(df['name'], df['age'] + 1).show()
# +-------+---------+
# |   name|(age + 1)|
# +-------+---------+
# |Michael|     null|
# |   Andy|       31|
# | Justin|       20|
# +-------+---------+

# Select people older than 21
df.filter(df['age'] > 21).show()
# +---+----+
# |age|name|
# +---+----+
# | 30|Andy|
# +---+----+

# Count people by age
df.groupBy("age").count().show()
# +----+-----+
# | age|count|
# +----+-----+
# |  19|    1|
# |null|    1|
# |  30|    1|
# +----+-----+

DataSet創(chuàng)建及操作

??Datasets和RDD類似,但使用專門的Encoder編碼器來序列化需要經(jīng)過網(wǎng)絡(luò)傳輸?shù)臄?shù)據(jù)對象,而不用RDD使用的Java序列化或Kryo庫。Encoder編碼器是動態(tài)生成的代碼,允許直接執(zhí)行各種算子操作,而不用反序列化。

  • scala
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface
case class Person(name: String, age: Long)

// Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
// +----+---+
// |name|age|
// +----+---+
// |Andy| 32|
// +----+---+

// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)

// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
val path = "examples/src/main/resources/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+
  • java
import java.util.Arrays;
import java.util.Collections;
import java.io.Serializable;

import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;

public static class Person implements Serializable {
  private String name;
  private int age;

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public int getAge() {
    return age;
  }

  public void setAge(int age) {
    this.age = age;
  }
}

// Create an instance of a Bean class
Person person = new Person();
person.setName("Andy");
person.setAge(32);

// Encoders are created for Java beans
Encoder personEncoder = Encoders.bean(Person.class);
Dataset javaBeanDS = spark.createDataset(
  Collections.singletonList(person),
  personEncoder
);
javaBeanDS.show();
// +---+----+
// |age|name|
// +---+----+
// | 32|Andy|
// +---+----+

// Encoders for most common types are provided in class Encoders
Encoder integerEncoder = Encoders.INT();
Dataset primitiveDS = spark.createDataset(Arrays.asList(1, 2, 3), integerEncoder);
Dataset transformedDS = primitiveDS.map(
    (MapFunction) value -> value + 1,
    integerEncoder);
transformedDS.collect(); // Returns [2, 3, 4]

// DataFrames can be converted to a Dataset by providing a class. Mapping based on name
String path = "examples/src/main/resources/people.json";
Dataset peopleDS = spark.read().json(path).as(personEncoder);
peopleDS.show();
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

SQL操作

  • scala
// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")
//df.createGlobalTempView("people")

val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+
  • java
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;

// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people");
//df.createGlobalTempView("people")

Dataset sqlDF = spark.sql("SELECT * FROM people");
sqlDF.show();
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+
  • python
# Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")
# df.createGlobalTempView("people")

sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
# +----+-------+
# | age|   name|
# +----+-------+
# |null|Michael|
# |  30|   Andy|
# |  19| Justin|
# +----+-------+

忠于技術(shù),熱愛分享。歡迎關(guān)注公眾號:java大數(shù)據(jù)編程,了解更多技術(shù)內(nèi)容。

10.spark sql之快速入門


文章題目:10.sparksql之快速入門
鏈接地址:http://weahome.cn/article/gsigjd.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部