大數(shù)據(jù)分析工具有:
創(chuàng)新互聯(lián)從2013年創(chuàng)立,是專業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項(xiàng)目成都網(wǎng)站設(shè)計(jì)、成都網(wǎng)站制作網(wǎng)站策劃,項(xiàng)目實(shí)施與項(xiàng)目整合能力。我們以讓每一個(gè)夢想脫穎而出為使命,1280元上海做網(wǎng)站,已為上家服務(wù),為上海各地企業(yè)和個(gè)人服務(wù),聯(lián)系電話:028-86922220
1、R-編程
R 編程是對所有人免費(fèi)的最好的大數(shù)據(jù)分析工具之一。它是一種領(lǐng)先的統(tǒng)計(jì)編程語言,可用于統(tǒng)計(jì)分析、科學(xué)計(jì)算、數(shù)據(jù)可視化等。R 編程語言還可以擴(kuò)展自身以執(zhí)行各種大數(shù)據(jù)分析操作。
在這個(gè)強(qiáng)大的幫助下;語言,數(shù)據(jù)科學(xué)家可以輕松創(chuàng)建統(tǒng)計(jì)引擎,根據(jù)相關(guān)和準(zhǔn)確的數(shù)據(jù)收集提供更好、更精確的數(shù)據(jù)洞察力。它具有類數(shù)據(jù)處理和存儲(chǔ)。我們還可以在 R 編程中集成其他數(shù)據(jù)分析工具。
除此之外,您還可以與任何編程語言(例如 Java、C、Python)集成,以提供更快的數(shù)據(jù)傳輸和準(zhǔn)確的分析。R 提供了大量可用于任何數(shù)據(jù)集的繪圖和圖形。
2、Apache Hadoop
Apache Hadoop 是領(lǐng)先的大數(shù)據(jù)分析工具開源。它是一個(gè)軟件框架,用于在商品硬件的集群上存儲(chǔ)數(shù)據(jù)和運(yùn)行應(yīng)用程序。它是由軟件生態(tài)系統(tǒng)組成的領(lǐng)先框架。
Hadoop 使用其 Hadoop 分布式文件系統(tǒng)或 HDFS 和 MapReduce。它被認(rèn)為是大數(shù)據(jù)分析的頂級數(shù)據(jù)倉庫。它具有在數(shù)百臺廉價(jià)服務(wù)器上存儲(chǔ)和分發(fā)大數(shù)據(jù)集的驚人能力。
這意味著您無需任何額外費(fèi)用即可執(zhí)行大數(shù)據(jù)分析。您還可以根據(jù)您的要求向其添加新節(jié)點(diǎn),它永遠(yuǎn)不會(huì)讓您失望。
3、MongoDB
MongoDB 是世界領(lǐng)先的數(shù)據(jù)庫軟件。它基于 NoSQL 數(shù)據(jù)庫,可用于存儲(chǔ)比基于 RDBMS 的數(shù)據(jù)庫軟件更多的數(shù)據(jù)量。MongoDB 功能強(qiáng)大,是最好的大數(shù)據(jù)分析工具之一。
它使用集合和文檔,而不是使用行和列。文檔由鍵值對組成,即MongoDB 中的一個(gè)基本數(shù)據(jù)單元。文檔可以包含各種單元。但是大小、內(nèi)容和字段數(shù)量因 MongoDB 中的文檔而異。
MongoDB 最好的部分是它允許開發(fā)人員更改文檔結(jié)構(gòu)。文檔結(jié)構(gòu)可以基于程序員在各自的編程語言中定義的類和對象。
MongoDB 有一個(gè)內(nèi)置的數(shù)據(jù)模型,使程序員能夠理想地表示層次關(guān)系來存儲(chǔ)數(shù)組和其他元素。
4、RapidMiner
RapidMiner 是分析師集成數(shù)據(jù)準(zhǔn)備、機(jī)器學(xué)習(xí)、預(yù)測模型部署等的領(lǐng)先平臺之一。它是最好的免費(fèi)大數(shù)據(jù)分析工具,可用于數(shù)據(jù)分析和文本挖掘。
它是最強(qiáng)大的工具,具有用于分析過程設(shè)計(jì)的一流圖形用戶界面。它獨(dú)立于平臺,適用于 Windows、Linux、Unix 和 macOS。它提供各種功能,例如安全控制,在可視化工作流設(shè)計(jì)器工具的幫助下減少編寫冗長代碼的需要。
它使用戶能夠采用大型數(shù)據(jù)集在 Hadoop 中進(jìn)行訓(xùn)練。除此之外,它還允許團(tuán)隊(duì)協(xié)作、集中工作流管理、Hadoop 模擬等。
它還組裝請求并重用 Spark 容器以對流程進(jìn)行智能優(yōu)化。RapidMiner有五種數(shù)據(jù)分析產(chǎn)品,即RapidMiner Studio Auto Model、Auto Model、RapidMiner Turbo Prep、RapidMiner Server和RapidMiner Radoop。
5、Apache Spark
Apache Spark 是最好、最強(qiáng)大的開源大數(shù)據(jù)分析工具之一。借助其數(shù)據(jù)處理框架,它可以處理大量數(shù)據(jù)集。通過結(jié)合或其他分布式計(jì)算工具,在多臺計(jì)算機(jī)上分發(fā)數(shù)據(jù)處理任務(wù)非常容易。
它具有用于流式 SQL、機(jī)器學(xué)習(xí)和圖形處理支持的內(nèi)置功能。它還使該站點(diǎn)成為大數(shù)據(jù)轉(zhuǎn)換的最快速和通用的生成器。我們可以在內(nèi)存中以快 100 倍的速度處理數(shù)據(jù),而在磁盤中則快 10 倍。
除此之外,它還擁有 80 個(gè)高級算子,可以更快地構(gòu)建并行應(yīng)用程序。它還提供 Java 中的高級 API。該平臺還提供了極大的靈活性和多功能性,因?yàn)樗m用于不同的數(shù)據(jù)存儲(chǔ),如 HDFS、Openstack 和 Apache Cassandra。
6、Microsoft Azure
Microsoft Azure 是領(lǐng)先的大數(shù)據(jù)分析工具之一。Microsoft Azure 也稱為 Windows Azure。它是 Microsoft 處理的公共云計(jì)算平臺,是提供包括計(jì)算、分析、存儲(chǔ)和網(wǎng)絡(luò)在內(nèi)的廣泛服務(wù)的領(lǐng)先平臺。
Windows Azure 提供兩類標(biāo)準(zhǔn)和高級的大數(shù)據(jù)云產(chǎn)品。它可以無縫處理大量數(shù)據(jù)工作負(fù)載。
除此之外,Microsoft Azure 還擁有一流的分析能力和行業(yè)領(lǐng)先的 SLA 以及企業(yè)級安全和監(jiān)控。它也是開發(fā)人員和數(shù)據(jù)科學(xué)家的最佳和高效平臺。它提供了在最先進(jìn)的應(yīng)用程序中很容易制作的實(shí)時(shí)數(shù)據(jù)。
無需 IT 基礎(chǔ)架構(gòu)或虛擬服務(wù)器進(jìn)行處理。它可以輕松嵌入其他編程語言,如 JavaScript 和 C#。
7、Zoho Analytics
Zoho Analytics 是最可靠的大數(shù)據(jù)分析工具之一。它是一種 BI 工具,可以無縫地用于數(shù)據(jù)分析,并幫助我們直觀地分析數(shù)據(jù)以更好地理解原始數(shù)據(jù)。
同樣,任何其他分析工具都允許我們集成多個(gè)數(shù)據(jù)源,例如業(yè)務(wù)應(yīng)用程序、數(shù)據(jù)庫軟件、云存儲(chǔ)、CRM 等等。我們還可以在方便時(shí)自定義報(bào)告,因?yàn)樗试S我們生成動(dòng)態(tài)且高度自定義的可操作報(bào)告。
在 Zoho 分析中上傳數(shù)據(jù)也非常靈活和容易。我們還可以在其中創(chuàng)建自定義儀表板,因?yàn)樗子诓渴鸷蛯?shí)施。世界各地的用戶廣泛使用該平臺。此外,它還使我們能夠在應(yīng)用程序中生成評論威脅,以促進(jìn)員工和團(tuán)隊(duì)之間的協(xié)作。
它是最好的大數(shù)據(jù)分析工具,與上述任何其他工具相比,它需要的知識和培訓(xùn)更少。因此,它是初創(chuàng)企業(yè)和入門級企業(yè)的最佳選擇。
以上內(nèi)容參考 百度百科——大數(shù)據(jù)分析
關(guān)系數(shù)據(jù)庫經(jīng)過幾十年的發(fā)展,已經(jīng)非常成熟,但同時(shí)也存在不足:
表結(jié)構(gòu)是強(qiáng)約束的,業(yè)務(wù)變更時(shí)擴(kuò)充很麻煩。
如果對大數(shù)據(jù)量的表進(jìn)行統(tǒng)計(jì)運(yùn)算,I/O會(huì)很高,因?yàn)榧词怪会槍δ沉羞M(jìn)行運(yùn)算,也需要將整行數(shù)據(jù)讀入內(nèi)存。
全文搜索只能使用 Like 進(jìn)行整表掃描,性能非常低。
針對這些不足,產(chǎn)生了不同的 NoSQL 解決方案,在某些場景下比關(guān)系數(shù)據(jù)庫更有優(yōu)勢,但同時(shí)也犧牲了某些特性,所以不能片面的迷信某種方案,應(yīng)將其作為 SQL 的有利補(bǔ)充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分為4類:
Redis 是典型,其 value 是具體的數(shù)據(jù)結(jié)構(gòu),包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被稱為數(shù)據(jù)結(jié)構(gòu)服務(wù)器。
以 list 為例:
LPOP key 是移除并返回隊(duì)列左邊的第一個(gè)元素。
如果用關(guān)系數(shù)據(jù)庫就比較麻煩了,需要操作:
Redis 的缺點(diǎn)主要體現(xiàn)在不支持完成的ACID事務(wù),只能保證隔離性和一致性,無法保證原子性和持久性。
最大的特點(diǎn)是 no-schema,無需在使用前定義字段,讀取一個(gè)不存在的字段也不會(huì)導(dǎo)致語法錯(cuò)誤。
特點(diǎn):
以電商為例,不同商品的屬性差異很大,如冰箱和電腦,這種差異性在關(guān)系數(shù)據(jù)庫中會(huì)有很大的麻煩,而使用文檔數(shù)據(jù)庫則非常方便。
文檔數(shù)據(jù)庫的主要缺點(diǎn):
關(guān)系數(shù)據(jù)庫是按行來存儲(chǔ)的,列式數(shù)據(jù)庫是按照列來存儲(chǔ)數(shù)據(jù)。
按行存儲(chǔ)的優(yōu)勢:
在某些場景下,這些優(yōu)勢就成為劣勢了,例如,計(jì)算超重人員的數(shù)據(jù),只需要讀取體重這一列進(jìn)行統(tǒng)計(jì)即可,但行式存儲(chǔ)會(huì)將整行數(shù)據(jù)讀取到內(nèi)存中,很浪費(fèi)。
而列式存儲(chǔ)中,只需要讀取體重這列的數(shù)據(jù)即可,I/O 將大大減少。
除了節(jié)省I/O,列式存儲(chǔ)還有更高的壓縮比,可以節(jié)省存儲(chǔ)空間。普通行式數(shù)據(jù)庫的壓縮比在 3:1 到 5:1 左右,列式數(shù)據(jù)庫在 8:1 到 30:1,因?yàn)閱蝹€(gè)列的數(shù)據(jù)相似度更高。
列式存儲(chǔ)的隨機(jī)寫效率遠(yuǎn)低于行式存儲(chǔ),因?yàn)樾惺酱鎯?chǔ)時(shí)同一行多個(gè)列都存儲(chǔ)在連續(xù)空間中,而列式存儲(chǔ)將不同列存儲(chǔ)在不連續(xù)的空間。
一般將列式存儲(chǔ)應(yīng)用在離線大數(shù)據(jù)分析統(tǒng)計(jì)場景,因?yàn)檫@時(shí)主要針對部分列進(jìn)行操作,而且數(shù)據(jù)寫入后無須更新。
關(guān)系數(shù)據(jù)庫通過索引進(jìn)行快速查詢,但在全文搜索的情景下,索引就不夠了,因?yàn)椋?/p>
假設(shè)有一個(gè)交友網(wǎng)站,信息表如下:
需要匹配性別、地點(diǎn)、語言列。
需要匹配性別、地點(diǎn)、愛好列。
實(shí)際搜索中,各種排列組合非常多,關(guān)系數(shù)據(jù)庫很難支持。
全文搜索引擎是使用 倒排索引 技術(shù),建立單詞到文檔的索引,例如上面的表信息建立倒排索引:
所以特別適合根據(jù)關(guān)鍵詞來查詢文檔內(nèi)容。
上面介紹了幾種典型的NoSQL方案,及各自的適用場景和特點(diǎn),您可以根據(jù)實(shí)際需求進(jìn)行選擇。
本質(zhì)是因?yàn)椋弘S著互聯(lián)網(wǎng)的進(jìn)一步發(fā)展與各行業(yè)信息化建設(shè)進(jìn)程加快、參與者的增多,人們對軟件有了更多更新的要求,需要軟件不僅能實(shí)現(xiàn)功能,而且要求保證許多人可以共同參與使用,因而軟件所需承載的數(shù)據(jù)量和吞吐量必須達(dá)到相應(yīng)的需求。而目前的關(guān)系型數(shù)據(jù)庫在某些方面有一些缺點(diǎn),導(dǎo)致不能滿足需要。
具體則需要對比關(guān)系型數(shù)據(jù)庫與Nosql之間的區(qū)別可以得出
關(guān)系型數(shù)據(jù)庫
關(guān)系型數(shù)據(jù)庫把所有的數(shù)據(jù)都通過行和列的二元表現(xiàn)形式表示出來。
關(guān)系型數(shù)據(jù)庫的優(yōu)勢:
1.?保持?jǐn)?shù)據(jù)的一致性(事務(wù)處理)
2.由于以標(biāo)準(zhǔn)化為前提,數(shù)據(jù)更新的開銷很?。ㄏ嗤淖侄位旧隙贾挥幸惶帲?/p>
3.?可以進(jìn)行Join等復(fù)雜查詢
其中能夠保持?jǐn)?shù)據(jù)的一致性是關(guān)系型數(shù)據(jù)庫的最大優(yōu)勢。
關(guān)系型數(shù)據(jù)庫的不足:
不擅長的處理
1.?大量數(shù)據(jù)的寫入處理(這點(diǎn)尤為重要)
2.?為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)(schema)變更
3.?字段不固定時(shí)應(yīng)用
4.?對簡單查詢需要快速返回結(jié)果的處理
--大量數(shù)據(jù)的寫入處理
讀寫集中在一個(gè)數(shù)據(jù)庫上讓數(shù)據(jù)庫不堪重負(fù),大部分網(wǎng)站已使用主從復(fù)制技術(shù)實(shí)現(xiàn)讀寫分離,以提高讀寫性能和讀庫的可擴(kuò)展性。
所以在進(jìn)行大量數(shù)據(jù)操作時(shí),會(huì)使用數(shù)據(jù)庫主從模式。數(shù)據(jù)的寫入由主數(shù)據(jù)庫負(fù)責(zé),數(shù)據(jù)的讀入由從數(shù)據(jù)庫負(fù)責(zé),可以比較簡單地通過增加從數(shù)據(jù)庫來實(shí)現(xiàn)規(guī)模化,但是數(shù)據(jù)的寫入?yún)s完全沒有簡單的方法來解決規(guī)?;瘑栴}。
第一,要想將數(shù)據(jù)的寫入規(guī)模化,可以考慮把主數(shù)據(jù)庫從一臺增加到兩臺,作為互相關(guān)聯(lián)復(fù)制的二元主數(shù)據(jù)庫使用,確實(shí)這樣可以把每臺主數(shù)據(jù)庫的負(fù)荷減少一半,但是更新處理會(huì)發(fā)生沖突,可能會(huì)造成數(shù)據(jù)的不一致,為了避免這樣的問題,需要把對每個(gè)表的請求分別分配給合適的主數(shù)據(jù)庫來處理。
第二,可以考慮把數(shù)據(jù)庫分割開來,分別放在不同的數(shù)據(jù)庫服務(wù)器上,比如將不同的表放在不同的數(shù)據(jù)庫服務(wù)器上,數(shù)據(jù)庫分割可以減少每臺數(shù)據(jù)庫服務(wù)器上的數(shù)據(jù)量,以便減少硬盤IO的輸入、輸出處理,實(shí)現(xiàn)內(nèi)存上的高速處理。但是由于分別存儲(chǔ)字不同服務(wù)器上的表之間無法進(jìn)行Join處理,數(shù)據(jù)庫分割的時(shí)候就需要預(yù)先考慮這些問題,數(shù)據(jù)庫分割之后,如果一定要進(jìn)行Join處理,就必須要在程序中進(jìn)行關(guān)聯(lián),這是非常困難的。
--為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)變更
在使用關(guān)系型數(shù)據(jù)庫時(shí),為了加快查詢速度需要?jiǎng)?chuàng)建索引,為了增加必要的字段就一定要改變表結(jié)構(gòu),為了進(jìn)行這些處理,需要對表進(jìn)行共享鎖定,這期間數(shù)據(jù)變更、更新、插入、刪除等都是無法進(jìn)行的。如果需要進(jìn)行一些耗時(shí)操作,例如為數(shù)據(jù)量比較大的表創(chuàng)建索引或是變更其表結(jié)構(gòu),就需要特別注意,長時(shí)間內(nèi)數(shù)據(jù)可能無法進(jìn)行更新。
--字段不固定時(shí)的應(yīng)用
如果字段不固定,利用關(guān)系型數(shù)據(jù)庫也是比較困難的,有人會(huì)說,需要的時(shí)候加個(gè)字段就可以了,這樣的方法也不是不可以,但在實(shí)際運(yùn)用中每次都進(jìn)行反復(fù)的表結(jié)構(gòu)變更是非常痛苦的。你也可以預(yù)先設(shè)定大量的預(yù)備字段,但這樣的話,時(shí)間一長很容易弄不清除字段和數(shù)據(jù)的對應(yīng)狀態(tài),即哪個(gè)字段保存有哪些數(shù)據(jù)。
--對簡單查詢需要快速返回結(jié)果的處理? (這里的“簡單”指的是沒有復(fù)雜的查詢條件)
這一點(diǎn)稱不上是缺點(diǎn),但不管怎樣,關(guān)系型數(shù)據(jù)庫并不擅長對簡單的查詢快速返回結(jié)果,因?yàn)殛P(guān)系型數(shù)據(jù)庫是使用專門的sql語言進(jìn)行數(shù)據(jù)讀取的,它需要對sql與越南進(jìn)行解析,同時(shí)還有對表的鎖定和解鎖等這樣的額外開銷,這里并不是說關(guān)系型數(shù)據(jù)庫的速度太慢,而只是想告訴大家若希望對簡單查詢進(jìn)行高速處理,則沒有必要非使用關(guān)系型數(shù)據(jù)庫不可。
NoSQL數(shù)據(jù)庫
關(guān)系型數(shù)據(jù)庫應(yīng)用廣泛,能進(jìn)行事務(wù)處理和表連接等復(fù)雜查詢。相對地,NoSQL數(shù)據(jù)庫只應(yīng)用在特定領(lǐng)域,基本上不進(jìn)行復(fù)雜的處理,但它恰恰彌補(bǔ)了之前所列舉的關(guān)系型數(shù)據(jù)庫的不足之處。
優(yōu)點(diǎn):
易于數(shù)據(jù)的分散
各個(gè)數(shù)據(jù)之間存在關(guān)聯(lián)是關(guān)系型數(shù)據(jù)庫得名的主要原因,為了進(jìn)行join處理,關(guān)系型數(shù)據(jù)庫不得不把數(shù)據(jù)存儲(chǔ)在同一個(gè)服務(wù)器內(nèi),這不利于數(shù)據(jù)的分散,這也是關(guān)系型數(shù)據(jù)庫并不擅長大數(shù)據(jù)量的寫入處理的原因。相反NoSQL數(shù)據(jù)庫原本就不支持Join處理,各個(gè)數(shù)據(jù)都是獨(dú)立設(shè)計(jì)的,很容易把數(shù)據(jù)分散在多個(gè)服務(wù)器上,故減少了每個(gè)服務(wù)器上的數(shù)據(jù)量,即使要處理大量數(shù)據(jù)的寫入,也變得更加容易,數(shù)據(jù)的讀入操作當(dāng)然也同樣容易。
典型的NoSQL數(shù)據(jù)庫
臨時(shí)性鍵值存儲(chǔ)(memcached、Redis)、永久性鍵值存儲(chǔ)(ROMA、Redis)、面向文檔的數(shù)據(jù)庫(MongoDB、CouchDB)、面向列的數(shù)據(jù)庫(Cassandra、HBase)
一、 鍵值存儲(chǔ)
它的數(shù)據(jù)是以鍵值的形式存儲(chǔ)的,雖然它的速度非??欤旧现荒芡ㄟ^鍵的完全一致查詢獲取數(shù)據(jù),根據(jù)數(shù)據(jù)的保存方式可以分為臨時(shí)性、永久性和兩者兼具 三種。
(1)臨時(shí)性
所謂臨時(shí)性就是數(shù)據(jù)有可能丟失,memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非???,但是當(dāng)memcached停止時(shí),數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無法操作超出內(nèi)存容量的數(shù)據(jù),舊數(shù)據(jù)會(huì)丟失??偨Y(jié)來說:
。在內(nèi)存中保存數(shù)據(jù)
。可以進(jìn)行非??焖俚谋4婧妥x取處理
。數(shù)據(jù)有可能丟失
(2)永久性
所謂永久性就是數(shù)據(jù)不會(huì)丟失,這里的鍵值存儲(chǔ)是把數(shù)據(jù)保存在硬盤上,與臨時(shí)性比起來,由于必然要發(fā)生對硬盤的IO操作,所以性能上還是有差距的,但數(shù)據(jù)不會(huì)丟失是它最大的優(yōu)勢。總結(jié)來說:
。在硬盤上保存數(shù)據(jù)
??梢赃M(jìn)行非??焖俚谋4婧妥x取處理(但無法與memcached相比)
。數(shù)據(jù)不會(huì)丟失
(3) 兩者兼?zhèn)?/p>
Redis屬于這種類型。Redis有些特殊,臨時(shí)性和永久性兼具。Redis首先把數(shù)據(jù)保存在內(nèi)存中,在滿足特定條件(默認(rèn)是?15分鐘一次以上,5分鐘內(nèi)10個(gè)以上,1分鐘內(nèi)10000個(gè)以上的鍵發(fā)生變更)的時(shí)候?qū)?shù)據(jù)寫入到硬盤中,這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過寫入硬盤來保證數(shù)據(jù)的永久性,這種類型的數(shù)據(jù)庫特別適合處理數(shù)組類型的數(shù)據(jù)。總結(jié)來說:
。同時(shí)在內(nèi)存和硬盤上保存數(shù)據(jù)
??梢赃M(jìn)行非??焖俚谋4婧妥x取處理
。保存在硬盤上的數(shù)據(jù)不會(huì)消失(可以恢復(fù))
。適合于處理數(shù)組類型的數(shù)據(jù)
二、面向文檔的數(shù)據(jù)庫
MongoDB、CouchDB屬于這種類型,它們屬于NoSQL數(shù)據(jù)庫,但與鍵值存儲(chǔ)相異。
(1)不定義表結(jié)構(gòu)
即使不定義表結(jié)構(gòu),也可以像定義了表結(jié)構(gòu)一樣使用,還省去了變更表結(jié)構(gòu)的麻煩。
(2)可以使用復(fù)雜的查詢條件
跟鍵值存儲(chǔ)不同的是,面向文檔的數(shù)據(jù)庫可以通過復(fù)雜的查詢條件來獲取數(shù)據(jù),雖然不具備事務(wù)處理和Join這些關(guān)系型數(shù)據(jù)庫所具有的處理能力,但初次以外的其他處理基本上都能實(shí)現(xiàn)。
三、?面向列的數(shù)據(jù)庫
Cassandra、HBae、HyperTable屬于這種類型,由于近年來數(shù)據(jù)量出現(xiàn)爆發(fā)性增長,這種類型的NoSQL數(shù)據(jù)庫尤其引入注目。
普通的關(guān)系型數(shù)據(jù)庫都是以行為單位來存儲(chǔ)數(shù)據(jù)的,擅長以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關(guān)系型數(shù)據(jù)庫也被成為面向行的數(shù)據(jù)庫。相反,面向列的數(shù)據(jù)庫是以列為單位來存儲(chǔ)數(shù)據(jù)的,擅長以列為單位讀入數(shù)據(jù)。
面向列的數(shù)據(jù)庫具有搞擴(kuò)展性,即使數(shù)據(jù)增加也不會(huì)降低相應(yīng)的處理速度(特別是寫入速度),所以它主要應(yīng)用于需要處理大量數(shù)據(jù)的情況。另外,把它作為批處理程序的存儲(chǔ)器來對大量數(shù)據(jù)進(jìn)行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫跟現(xiàn)行數(shù)據(jù)庫存儲(chǔ)的思維方式有很大不同,故應(yīng)用起來十分困難。
總結(jié):關(guān)系型數(shù)據(jù)庫與NoSQL數(shù)據(jù)庫并非對立而是互補(bǔ)的關(guān)系,即通常情況下使用關(guān)系型數(shù)據(jù)庫,在適合使用NoSQL的時(shí)候使用NoSQL數(shù)據(jù)庫,讓NoSQL數(shù)據(jù)庫對關(guān)系型數(shù)據(jù)庫的不足進(jìn)行彌補(bǔ)。
NoSQL不像傳統(tǒng)關(guān)系型庫那樣有統(tǒng)一的標(biāo)準(zhǔn),也不具有普適性。所以要根據(jù)應(yīng)用和數(shù)據(jù)的存取特征來選擇適合的NoSQL。如果以前沒有接觸過NoSQL,MongoDB是一個(gè)比較好的選擇,他支持的所以和查詢能力是所有NoSQL中最強(qiáng)大的,缺點(diǎn)是索引的成本和文檔大小限制。如果是使用Hadoop大數(shù)據(jù)分析,數(shù)據(jù)基本上不存在修改,只是插入和查詢,并且需要配合Hadoop的MR任務(wù),HBase會(huì)是很好的選擇。如果要求有很強(qiáng)的擴(kuò)展能力,高并發(fā)讀寫和維護(hù)方便,Casaandra則是不錯(cuò)的選擇。當(dāng)然除了上面三個(gè)流行的NoSQL,還有很多優(yōu)秀的NoSQL數(shù)據(jù)庫,而且他們都有各自擅長領(lǐng)域,所以需要了解你們產(chǎn)品自身的特點(diǎn)然后分析選擇哪種才是最適合的,往往在大型系統(tǒng)中不是單一的數(shù)據(jù)庫,而是使用多種數(shù)據(jù)庫組合。