No SQL DB是一種和關(guān)系型數(shù)據(jù)庫相對(duì)應(yīng)的對(duì)象數(shù)據(jù)庫。按照數(shù)據(jù)模型保存性質(zhì)將當(dāng)前NoSQL分為四種:
專業(yè)成都網(wǎng)站建設(shè)公司,做排名好的好網(wǎng)站,排在同行前面,為您帶來客戶和效益!創(chuàng)新互聯(lián)公司為您提供成都網(wǎng)站建設(shè),五站合一網(wǎng)站設(shè)計(jì)制作,服務(wù)好的網(wǎng)站設(shè)計(jì)公司,成都網(wǎng)站設(shè)計(jì)、成都網(wǎng)站制作負(fù)責(zé)任的成都網(wǎng)站制作公司!
1.Key-value stores鍵值存儲(chǔ), 保存keys+BLOBs
2.Table-oriented 面向表, 主要有Google的BigTable和Cassandra.
3.Document-oriented面向文本, 文本是一種類似XML文檔,MongoDB 和 CouchDB
4.Graph-oriented 面向圖論. 如Neo4J.
關(guān)系型數(shù)據(jù)庫的弊端:
關(guān)系型數(shù)據(jù)庫的歷史已經(jīng)有30余年了,因此,在某些情況下,關(guān)系型數(shù)據(jù)庫的弱點(diǎn)就會(huì)暴露出來:
1. “對(duì)象-關(guān)系 阻抗不匹配”。關(guān)系模型和面向?qū)ο竽P驮诟拍钌洗嬖谔烊坏牟黄ヅ涞牡胤?,比如?duì)象模型當(dāng)中特有的“繼承”,“組合”,“聚合”,“依賴”的概念在關(guān)系模型當(dāng)中是不存在的。
2. “模式演進(jìn)”。即隨著時(shí)間的推移,需要對(duì)數(shù)據(jù)庫模式進(jìn)行調(diào)整以便適應(yīng)新的需求,然而,對(duì)數(shù)據(jù)庫模式的調(diào)整是的成本很高的動(dòng)作,因此很多設(shè)計(jì)師在系統(tǒng)設(shè)計(jì)之初會(huì)設(shè)計(jì)一個(gè)兼容性很強(qiáng)的數(shù)據(jù)庫模式,以應(yīng)對(duì)將來可能出現(xiàn)的需求,然而在現(xiàn)在的web系統(tǒng)開發(fā)過程中,系統(tǒng)的變更更加頻繁,幾乎無法預(yù)先設(shè)計(jì)出一種“萬能”的數(shù)據(jù)庫模式以滿足所有的需求,因此 模式演進(jìn)的弊端就愈發(fā)凸顯。
3. 關(guān)系型數(shù)據(jù)庫處理 稀疏表時(shí)的性能非常差。
4. network-oriented data 很適合處理 人工智能、社交網(wǎng)絡(luò)中的一些需求。
所以,各種各樣的No SQL DB 出現(xiàn)了,這里只簡(jiǎn)單介紹下Neo4J 的基本知識(shí)。
Neo 數(shù)據(jù)模型
Neo4J 是一個(gè)基于圖實(shí)現(xiàn)的No SQL DB, 其基本的數(shù)據(jù)類型有如下幾種:
Node, Relationship, Property.
Node 對(duì)應(yīng)于圖中的 節(jié)點(diǎn),Relationship 對(duì)應(yīng)圖中的邊,Node 和 Relationship 都可以擁有Property,
Property 的數(shù)據(jù)結(jié)構(gòu)為。
數(shù)據(jù)遍歷
Neo 提供了Traverser對(duì)數(shù)據(jù)中的數(shù)據(jù)進(jìn)行遍歷。
NoSQL 數(shù)據(jù)庫因其功能性、易于開發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們?cè)絹碓蕉嗟赜糜诖髷?shù)據(jù)和實(shí)時(shí) Web 應(yīng)用程序,在本文中,我們通過示例討論 NoSQL、何時(shí)使用 NoSQL 與 SQL 及其用例。
NoSQL是一種下一代數(shù)據(jù)庫管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。
“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來就已經(jīng)存在類似的數(shù)據(jù)庫。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。
在處理大量數(shù)據(jù)時(shí),任何關(guān)系數(shù)據(jù)庫管理系統(tǒng) (RDBMS) 的響應(yīng)時(shí)間都會(huì)變慢。為了解決這個(gè)問題,我們可以通過升級(jí)現(xiàn)有硬件來“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。
NoSQL 對(duì)于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對(duì)象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。
一些流行的 NoSQL 數(shù)據(jù)庫包括:
隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對(duì)象來更好地捕獲這些信息。
傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語言)語法來存儲(chǔ)和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫包含廣泛的功能,可以存儲(chǔ)和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。
有時(shí),NoSQL 也被稱為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類似 SQL 的語言或與 SQL 數(shù)據(jù)庫并列。SQL 和 NoSQL DBMS 之間的一個(gè)區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫使用 JOIN 子句來組合來自兩個(gè)或多個(gè)表的行,因?yàn)?NoSQL 數(shù)據(jù)庫本質(zhì)上不是表格的,所以這個(gè)功能并不總是可行或相關(guān)的。
但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫傾向于以不同的方式解決類似的問題。
一般來說,在以下情況下,NoSQL 比 SQL 更可?。?/p>
許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫,從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫的一些企業(yè)用例。
內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫可以通過其靈活和開放的數(shù)據(jù)模型為存儲(chǔ)多媒體內(nèi)容提供更好的選擇。
例如,福布斯在短短幾個(gè)月內(nèi)就構(gòu)建了一個(gè)基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。
大數(shù)據(jù)是指太大而無法通過傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實(shí)時(shí)存儲(chǔ)和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時(shí)使用流處理來攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫的功能。
Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒有性能問題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。
物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺(tái)設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。
Freshub就是這樣的一項(xiàng)服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動(dòng)態(tài)、非統(tǒng)一的數(shù)據(jù)集。
擁有數(shù)十億智能手機(jī)用戶,可擴(kuò)展性正成為在移動(dòng)設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。
例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫每分鐘處理數(shù)百萬個(gè)請(qǐng)求,同時(shí)還處理用戶數(shù)據(jù)并提供天氣更新。
傳統(tǒng)觀念中 NoSQL數(shù)據(jù)庫非常適合某些數(shù)據(jù)類型,如:非關(guān)系數(shù)據(jù)源。同時(shí),NoSQL被吹捧為最適合Web應(yīng)用程序的優(yōu)秀平臺(tái)。然而他適合大多數(shù)數(shù)據(jù),特別是web應(yīng)用程序的數(shù)據(jù)是相關(guān)型。那么,這是否可以給你一個(gè)堅(jiān)持使用RDMS的理由呢?也不一定,即使很困難,我們還是要做出選擇。
評(píng)估NoSQL是一個(gè)很茅盾的理論,一些人認(rèn)為,應(yīng)該將所有文檔數(shù)據(jù)存儲(chǔ)在一個(gè)文檔中,做鏈接代碼就是褻瀆神明。另外一部分人認(rèn)為,存儲(chǔ)應(yīng)用文檔,
加入代碼,才是合理選擇。與此同時(shí),不同的數(shù)據(jù)庫,需要在文檔中限制嵌套數(shù)據(jù)數(shù)量。有的人會(huì)鼓勵(lì)文檔引用。這是NoSQL數(shù)據(jù)模型的基本部分,也沒有一個(gè)
明確的共識(shí)。
曾經(jīng)有一篇很熱的帖子"Why you should never use
XYZ",我想,讀到這里,一定會(huì)有人搜索這篇文章。當(dāng)然,這種文章各式各樣,太過于籠統(tǒng)的標(biāo)題也沒什么幫助。毫無疑問,會(huì)有人會(huì)搜索這個(gè)文章,然后再找
到這個(gè)文章,進(jìn)一步深入,找到該文章的方法遠(yuǎn)比成功(理解問題)的故事多。很難知道誰提供了一個(gè)有效的技術(shù)問題,誰又誤讀了這個(gè)問題(或者缺少證據(jù)證明其
觀點(diǎn))。
有大量選擇,RDBMS的世界,選擇就很容易。你有4或5個(gè)目標(biāo),大家工作方式差不多,來選擇環(huán)境、預(yù)算支持的平臺(tái)。對(duì)于成熟的產(chǎn)品,風(fēng)險(xiǎn)比較小。 NoSQL的世界,有很多數(shù)據(jù)庫引擎功能選擇。每一個(gè)有自己的獨(dú)特優(yōu)勢(shì),也有致命弱點(diǎn)。所以選擇很難, NoSQL項(xiàng)目生命周期短,嘗試新項(xiàng)目或者流行項(xiàng)目也會(huì)有風(fēng)險(xiǎn)。上次,我的的項(xiàng)目是在 CouchDB上,而現(xiàn)在似乎停擺了。
做出這個(gè)痛苦決定的原因是,這可能是一個(gè)案例:你需要做一大堆工作,才能知道,你做出的選擇對(duì)與錯(cuò)。你可以實(shí)體化你的數(shù)據(jù)模型,了解他與系統(tǒng)的工作
情況,但是,這只有你正真撞到南墻,才可以找到裂縫(答案)。以我為例,我建的應(yīng)用程序是關(guān)系數(shù)據(jù)庫,移動(dòng)文件存儲(chǔ)的主要因素是,需要一個(gè)無模式設(shè)計(jì)來達(dá)
到我的目標(biāo)。使用NoSQL 數(shù)據(jù)庫存儲(chǔ)關(guān)系型數(shù)據(jù)庫并不是我們所常說的,雖然,這種事常常發(fā)生。
現(xiàn)在我在用 Couchbase 和
MongoDB,Mongo對(duì)我沒多大吸引力,不過鑒于他非常流行,對(duì)于引起來說,很有好處。當(dāng)然,很多都可以以同樣的方式流行。PHP很流行,因?yàn)樗?/p>
易用性,而不是因?yàn)樗芎?。我現(xiàn)在在使用MongoDB和PHP,也在學(xué)習(xí)Couchbase,如果你有任何NoSQL平臺(tái)的使用感想,歡迎交流。
NoSQL與關(guān)系型數(shù)據(jù)庫設(shè)計(jì)理念比較 關(guān)系型數(shù)據(jù)庫中的表都是存儲(chǔ)一些格式化的數(shù)據(jù)結(jié)構(gòu),每個(gè)元組字段的組成都一樣,即使不是每個(gè)元組都需要所有的字段,但數(shù)據(jù)庫會(huì)為每個(gè)元組分配所有的字段,這樣的結(jié)構(gòu)可以便于表與表之間進(jìn)行連接等操作
特點(diǎn):
它們可以處理超大量的數(shù)據(jù)。
它們運(yùn)行在便宜的PC服務(wù)器集群上。
PC集群擴(kuò)充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對(duì)于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫結(jié)構(gòu)非常簡(jiǎn)單時(shí),SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對(duì)穩(wěn)定,他們同時(shí)也表示,企業(yè)的具體需求可能沒有那么多。
Bootstrap支持
因?yàn)镹oSQL項(xiàng)目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點(diǎn):
易擴(kuò)展
NoSQL數(shù)據(jù)庫種類繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴(kuò)展。也無形之間,在架構(gòu)的層面上帶來了可擴(kuò)展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來說就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。這點(diǎn)在大數(shù)據(jù)量的web2.0時(shí)代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實(shí)現(xiàn)高可用。
主要應(yīng)用:
Apache HBase
這個(gè)大數(shù)據(jù)管理平臺(tái)建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個(gè)優(yōu)勢(shì)的數(shù)據(jù)庫,Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺(tái),而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺(tái)的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時(shí)計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時(shí)數(shù)據(jù)處理功能,同時(shí)還增加了低延遲的儀表板、安全警報(bào),改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會(huì)、發(fā)展新業(yè)務(wù)。
Apache Spark
該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來管理大型數(shù)據(jù)集時(shí),對(duì)于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺(tái)的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實(shí)無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對(duì)。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺(tái),允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個(gè)問題。這一平臺(tái)采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強(qiáng)大的圖形處理平臺(tái),具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時(shí)還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對(duì)于實(shí)時(shí)的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺(tái)上的數(shù)據(jù)。
Gephi
它可以用來對(duì)信息進(jìn)行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個(gè)圖表類型,而且可以在具有上百萬個(gè)節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對(duì)復(fù)雜的IT連接、分布式系統(tǒng)中各個(gè)節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。
MongoDB
這個(gè)堅(jiān)實(shí)的平臺(tái)一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個(gè)應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺(tái)上存儲(chǔ)和處理數(shù)據(jù)。目前,紐約時(shí)報(bào)、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個(gè)參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場(chǎng)前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動(dòng)縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實(shí)時(shí)處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開源Hadoop的發(fā)行版,這個(gè)發(fā)行版采用了Apache Hadoop開源項(xiàng)目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時(shí),Cloudera的工程師們就會(huì)實(shí)現(xiàn)這些功能,或者找一個(gè)擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點(diǎn)使它不同于其他那些供應(yīng)商?!蹦壳?,Cloudera的平臺(tái)已經(jīng)擁有200多個(gè)付費(fèi)客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個(gè)節(jié)點(diǎn)實(shí)現(xiàn)對(duì)PB級(jí)數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個(gè)純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進(jìn)開源項(xiàng)目的發(fā)展。Hortonworks平臺(tái)和開源Hadoop聯(lián)系緊密,公司管理人員表示這會(huì)給用戶帶來好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶想要離開這個(gè)平臺(tái),他們可以輕松轉(zhuǎn)向其他開源平臺(tái))。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_發(fā)的成果回報(bào)給了開源社區(qū),比如Ambari,這個(gè)工具就是由Hortonworks開發(fā)而成,用來填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。
IBM
當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時(shí),很多人首先會(huì)想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個(gè)Hadoop部署,它的很多客戶都有PB級(jí)的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)?!癐BM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對(duì)高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)。”
Intel
和AWS類似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來說,就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個(gè)產(chǎn)品,所以公司在未來還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場(chǎng)上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對(duì)Hadoop用戶的調(diào)查顯示,MapR的評(píng)級(jí)最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場(chǎng)上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個(gè)真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場(chǎng)營銷。
Microsoft
微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢(shì)下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項(xiàng)目中,以更廣泛地推動(dòng)Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢實(shí)現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場(chǎng)上有很大優(yōu)勢(shì),而且微軟擁有龐大的用戶群,但要在Hadoop這個(gè)領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走。”
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個(gè)性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個(gè)名為HAWQ的SQL引擎以及一個(gè)專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺(tái)的優(yōu)勢(shì)在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢(shì)實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個(gè),而且大多是中小型客戶。
Teradata
對(duì)于Teradata來說,Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺(tái)崛起可能會(huì)威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺(tái)集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺(tái)上方便地使用存儲(chǔ)在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。
AMPLab
通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔?,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識(shí)別等多個(gè)領(lǐng)域,努力改進(jìn)對(duì)信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時(shí)代,而AMPLab為我們?cè)O(shè)想一個(gè)運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對(duì)越來越復(fù)雜的各種難題。
NoSQL,指的是非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的
SNS類型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。
NoSQL(NoSQL
= Not Only SQL
),意即“不僅僅是SQL”,是一項(xiàng)全新的數(shù)據(jù)庫革命性運(yùn)動(dòng),早期就有人提出,發(fā)展至2009年趨勢(shì)越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)
據(jù)存儲(chǔ),相對(duì)于鋪天蓋地的關(guān)系型數(shù)據(jù)庫運(yùn)用,這一概念無疑是一種全新的思維的注入。
從這一新興技術(shù)中選擇一款正確的NoSQL數(shù)據(jù)庫是非常具有挑戰(zhàn)性的。比一下網(wǎng)建議在選擇時(shí)考慮以下因素:
并發(fā)控制
并
發(fā)控制指的是當(dāng)多個(gè)用戶同時(shí)更新運(yùn)行時(shí),用于保護(hù)數(shù)據(jù)庫完整性的各種技術(shù)。并發(fā)機(jī)制不正確可能導(dǎo)致臟讀、幻讀和不可重復(fù)讀等此類問題。并發(fā)控制的目的是保
證一個(gè)用戶的工作不會(huì)對(duì)另一個(gè)用戶的工作產(chǎn)生不合理的影響。在某些情況下,這些措施保證了當(dāng)用戶和其他用戶一起操作時(shí),所得的結(jié)果和她單獨(dú)操作時(shí)的結(jié)果是
一樣的。在另一些情況下,這表示用戶的工作按預(yù)定的方式受其他用戶的影響。
封鎖
就是事務(wù)T在對(duì)某個(gè)數(shù)據(jù)對(duì)象(例如表、記錄等)操作之前,先向系統(tǒng)發(fā)出請(qǐng)求,對(duì)其加鎖。加鎖后事務(wù)T就對(duì)該數(shù)據(jù)對(duì)象有了一定的控制,在事務(wù)T釋放它的鎖之前,其它的事務(wù)不能更新此數(shù)據(jù)對(duì)象。
封鎖是一次只允許一個(gè)用戶讀取或修改的一種機(jī)制,是實(shí)現(xiàn)并發(fā)控制的一個(gè)非常重要的技術(shù)。
MVCC
Multi-Version Concurrency Control多版本并發(fā)控制,維持一個(gè)數(shù)據(jù)的多個(gè)版本使讀寫操作沒有沖突。MVCC優(yōu)化了數(shù)據(jù)庫并發(fā)系統(tǒng),使系統(tǒng)在有大量并發(fā)用戶時(shí)得到最高的性能,并且可以不用關(guān)閉服務(wù)器就直接進(jìn)行熱備份。
ACID
指
數(shù)據(jù)庫事務(wù)正確執(zhí)行的四個(gè)基本要素的縮寫。包含:原子性(Atomicity)、一致性(Consistency)、隔離性(Isolation)、持久
性(Durability)。一個(gè)支持事務(wù)(Transaction)的數(shù)據(jù)庫系統(tǒng),必需要具有這四種特性,否則在事務(wù)過程(Transaction
processing)當(dāng)中無法保證數(shù)據(jù)的正確性,交易過程極可能達(dá)不到交易方的要求。
None
一些系統(tǒng)不提供原子性。
鏡像
數(shù)據(jù)庫鏡像是DBMS根據(jù)DBA的要求,自動(dòng)把整個(gè)數(shù)據(jù)庫或其中的關(guān)鍵數(shù)據(jù)復(fù)制到另一個(gè)磁盤上,每當(dāng)主數(shù)據(jù)庫更新時(shí),DBMS會(huì)自動(dòng)把更新后的數(shù)據(jù)復(fù)制過去,即DBMS自動(dòng)保證鏡像數(shù)據(jù)與主數(shù)據(jù)的一致性。
鏡像分為同步和異步。
數(shù)據(jù)存儲(chǔ)
指的是數(shù)據(jù)的物理特性怎樣被存儲(chǔ)在數(shù)據(jù)庫中。
磁盤 數(shù)據(jù)被存儲(chǔ)在硬盤驅(qū)動(dòng)器里;
GFS或谷歌文件系統(tǒng)是一個(gè)由谷歌開發(fā)的專有的分布式文件系統(tǒng);
Hadoop是Apache軟件框架,免費(fèi)許可下支持?jǐn)?shù)據(jù)密集型分布式應(yīng)用程序;
RAM隨機(jī)存儲(chǔ)器;
插件 可以添加外部插件;
Amazon S3通過Web服務(wù)接口提供存儲(chǔ);
BDB:BDB
全稱是 “Berkeley DB”,它是MySQL具有事務(wù)能力的表類型,由Sleepycat
Software開發(fā)。BDB表類型提供了MySQL用戶長久期盼的功能,即事務(wù)控制能力。在任何RDBMS中,事務(wù)控制能力都是一種極其重要和寶貴的功
能。事務(wù)控制能力使得我們能夠確保一組命令確實(shí)已經(jīng)全部執(zhí)行成功,或者確保當(dāng)任何一個(gè)命令出現(xiàn)錯(cuò)誤時(shí)所有命令的執(zhí)行結(jié)果均被退回。
實(shí)現(xiàn)語言
實(shí)現(xiàn)語言會(huì)影響數(shù)據(jù)庫的發(fā)展速度。典型的NoSQL數(shù)據(jù)庫是用低級(jí)語言如C / C + +編寫的。另一方面,那些更高層次的語言如Java,使自定義更容易。
實(shí)現(xiàn)語言有:C, C++, Erlang, Java, Python
特性
考慮下列哪一個(gè)特點(diǎn)對(duì)你的數(shù)據(jù)庫是最重要的:
持久性
可用性
一致性
分區(qū)容忍性
證書類型
下面這些許可證是一個(gè)不同的開放源碼許可的形式:
GPL:通用公共許可證
BSD:伯克利軟件分發(fā)
MPL:Mozilla公共許可證
EPL:Eclipse公共許可證
IDPL:最初的開發(fā)者的公共許可證
LGPL:較寬松通用公共許可證
存儲(chǔ)類型
存儲(chǔ)類型是NoSQL數(shù)據(jù)庫最大的不同,是決定使用哪款數(shù)據(jù)庫的一個(gè)首要指標(biāo)。
關(guān)鍵字:支持get、put和刪除操作
按列存儲(chǔ):相對(duì)于傳統(tǒng)的按行存儲(chǔ),數(shù)據(jù)集成容易多了
面向文件系統(tǒng):存儲(chǔ)像是JSON或XML這樣的結(jié)構(gòu)化文件,很容易就能從面向?qū)ο筌浖蝎@取數(shù)據(jù)。