什么是NoSQL
創(chuàng)新互聯(lián)建站是一家專業(yè)提供萊陽企業(yè)網(wǎng)站建設(shè),專注與成都網(wǎng)站設(shè)計、成都做網(wǎng)站、html5、小程序制作等業(yè)務(wù)。10年已為萊陽眾多企業(yè)、政府機構(gòu)等服務(wù)。創(chuàng)新互聯(lián)專業(yè)網(wǎng)站制作公司優(yōu)惠進行中。
大家有沒有聽說過“NoSQL”呢?近年,這個詞極受關(guān)注??吹健癗oSQL”這個詞,大家可能會誤以為是“No!SQL”的縮寫,并深感憤怒:“SQL怎么會沒有必要了呢?”但實際上,它是“Not Only SQL”的縮寫。它的意義是:適用關(guān)系型數(shù)據(jù)庫的時候就使用關(guān)系型數(shù)據(jù)庫,不適用的時候也沒有必要非使用關(guān)系型數(shù)據(jù)庫不可,可以考慮使用更加合適的數(shù)據(jù)存儲。
為彌補關(guān)系型數(shù)據(jù)庫的不足,各種各樣的NoSQL數(shù)據(jù)庫應(yīng)運而生。
為了更好地了解本書所介紹的NoSQL數(shù)據(jù)庫,對關(guān)系型數(shù)據(jù)庫的理解是必不可少的。那么,就讓我們先來看一看關(guān)系型數(shù)據(jù)庫的歷史、分類和特征吧。
關(guān)系型數(shù)據(jù)庫簡史
1969年,埃德加?6?1弗蘭克?6?1科德(Edgar Frank Codd)發(fā)表了劃時代的論文,首次提出了關(guān)系數(shù)據(jù)模型的概念。但可惜的是,刊登論文的《IBM Research Report》只是IBM公司的內(nèi)部刊物,因此論文反響平平。1970年,他再次在刊物《Communication of the ACM》上發(fā)表了題為“A Relational Model of Data for Large Shared Data banks”(大型共享數(shù)據(jù)庫的關(guān)系模型)的論文,終于引起了大家的關(guān)注。
科德所提出的關(guān)系數(shù)據(jù)模型的概念成為了現(xiàn)今關(guān)系型數(shù)據(jù)庫的基礎(chǔ)。當(dāng)時的關(guān)系型數(shù)據(jù)庫由于硬件性能低劣、處理速度過慢而遲遲沒有得到實際應(yīng)用。但之后隨著硬件性能的提升,加之使用簡單、性能優(yōu)越等優(yōu)點,關(guān)系型數(shù)據(jù)庫得到了廣泛的應(yīng)用。
通用性及高性能
雖然本書是講解NoSQL數(shù)據(jù)庫的,但有一個重要的大前提,請大家一定不要誤解。這個大前提就是“關(guān)系型數(shù)據(jù)庫的性能絕對不低,它具有非常好的通用性和非常高的性能”。毫無疑問,對于絕大多數(shù)的應(yīng)用來說它都是最有效的解決方案。
突出的優(yōu)勢
關(guān)系型數(shù)據(jù)庫作為應(yīng)用廣泛的通用型數(shù)據(jù)庫,它的突出優(yōu)勢主要有以下幾點:
保持?jǐn)?shù)據(jù)的一致性(事務(wù)處理)
由于以標(biāo)準(zhǔn)化為前提,數(shù)據(jù)更新的開銷很小(相同的字段基本上都只有一處)
可以進行JOIN等復(fù)雜查詢
存在很多實際成果和專業(yè)技術(shù)信息(成熟的技術(shù))
這其中,能夠保持?jǐn)?shù)據(jù)的一致性是關(guān)系型數(shù)據(jù)庫的最大優(yōu)勢。在需要嚴(yán)格保證數(shù)據(jù)一致性和處理完整性的情況下,用關(guān)系型數(shù)據(jù)庫是肯定沒有錯的。但是有些情況不需要JOIN,對上述關(guān)系型數(shù)據(jù)庫的優(yōu)點也沒有什么特別需要,這時似乎也就沒有必要拘泥于關(guān)系型數(shù)據(jù)庫了。
關(guān)系型數(shù)據(jù)庫的不足
不擅長的處理
就像之前提到的那樣,關(guān)系型數(shù)據(jù)庫的性能非常高。但是它畢竟是一個通用型的數(shù)據(jù)庫,并不能完全適應(yīng)所有的用途。具體來說它并不擅長以下處理:
大量數(shù)據(jù)的寫入處理
為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)(schema)變更
字段不固定時應(yīng)用
對簡單查詢需要快速返回結(jié)果的處理
。。。。。。
NoSQL數(shù)據(jù)庫
為了彌補關(guān)系型數(shù)據(jù)庫的不足(特別是最近幾年),NoSQL數(shù)據(jù)庫出現(xiàn)了。關(guān)系型數(shù)據(jù)庫應(yīng)用廣泛,能進行事務(wù)處理和JOIN等復(fù)雜處理。相對地,NoSQL數(shù)據(jù)庫只應(yīng)用在特定領(lǐng)域,基本上不進行復(fù)雜的處理,但它恰恰彌補了之前所列舉的關(guān)系型數(shù)據(jù)庫的不足之處。
易于數(shù)據(jù)的分散
如前所述,關(guān)系型數(shù)據(jù)庫并不擅長大量數(shù)據(jù)的寫入處理。原本關(guān)系型數(shù)據(jù)庫就是以JOIN為前提的,就是說,各個數(shù)據(jù)之間存在關(guān)聯(lián)是關(guān)系型數(shù)據(jù)庫得名的主要原因。為了進行JOIN處理,關(guān)系型數(shù)據(jù)庫不得不把數(shù)據(jù)存儲在同一個服務(wù)器內(nèi),這不利于數(shù)據(jù)的分散。相反,NoSQL數(shù)據(jù)庫原本就不支持JOIN處理,各個數(shù)據(jù)都是獨立設(shè)計的,很容易把數(shù)據(jù)分散到多個服務(wù)器上。由于數(shù)據(jù)被分散到了多個服務(wù)器上,減少了每個服務(wù)器上的數(shù)據(jù)量,即使要進行大量數(shù)據(jù)的寫入操作,處理起來也更加容易。同理,數(shù)據(jù)的讀入操作當(dāng)然也同樣容易。
提升性能和增大規(guī)模
下面說一點題外話,如果想要使服務(wù)器能夠輕松地處理更大量的數(shù)據(jù),那么只有兩個選擇:一是提升性能,二是增大規(guī)模。下面我們來整理一下這兩者的不同。
首先,提升性能指的就是通過提升現(xiàn)行服務(wù)器自身的性能來提高處理能力。這是非常簡單的方法,程序方面也不需要進行變更,但需要一些費用。若要購買性能翻倍的服務(wù)器,需要花費的資金往往不只是原來的2倍,可能需要多達5到10倍。這種方法雖然簡單,但是成本較高。
另一方面,增大規(guī)模指的是使用多臺廉價的服務(wù)器來提高處理能力。它需要對程序進行變更,但由于使用廉價的服務(wù)器,可以控制成本。另外,以后只要依葫蘆畫瓢增加廉價服務(wù)器的數(shù)量就可以了。
不對大量數(shù)據(jù)進行處理的話就沒有使用的必要嗎?
NoSQL數(shù)據(jù)庫基本上來說為了“使大量數(shù)據(jù)的寫入處理更加容易(讓增加服務(wù)器數(shù)量更容易)”而設(shè)計的。但如果不是對大量數(shù)據(jù)進行操作的話,NoSQL數(shù)據(jù)庫的應(yīng)用就沒有意義嗎?
答案是否定的。的確,它在處理大量數(shù)據(jù)方面很有優(yōu)勢。但實際上NoSQL數(shù)據(jù)庫還有各種各樣的特點,如果能夠恰當(dāng)?shù)乩眠@些特點將會是非常有幫助。具體的例子將會在第2章和第3章進行介紹,這些用途將會讓你感受到利用NoSQL的好處。
希望順暢地對數(shù)據(jù)進行緩存(Cache)處理
希望對數(shù)組類型的數(shù)據(jù)進行高速處理
希望進行全部保存
多樣的NoSQL數(shù)據(jù)庫
NoSQL數(shù)據(jù)庫存在著“key-value存儲”、“文檔型數(shù)據(jù)庫”、“列存儲數(shù)據(jù)庫”等各種各樣的種類,每種數(shù)據(jù)庫又包含各自的特點。下一節(jié)讓我們一起來了解一下NoSQL數(shù)據(jù)庫的種類和特點。
NoSQL數(shù)據(jù)庫是什么
NoSQL說起來簡單,但實際上到底有多少種呢?我在提筆的時候,到NoSQL的官方網(wǎng)站上確認了一下,竟然已經(jīng)有122種了。另外官方網(wǎng)站上也介紹了本書沒有涉及到的圖形數(shù)據(jù)庫和對象數(shù)據(jù)庫等各個類別。不知不覺間,原來已經(jīng)出現(xiàn)了這么多的NoSQL數(shù)據(jù)庫啊。
本節(jié)將為大家介紹具有代表性的NoSQL數(shù)據(jù)庫。
key-value存儲
這是最常見的NoSQL數(shù)據(jù)庫,它的數(shù)據(jù)是以key-value的形式存儲的。雖然它的處理速度非常快,但是基本上只能通過key的完全一致查詢獲取數(shù)據(jù)。根據(jù)數(shù)據(jù)的保存方式可以分為臨時性、永久性和兩者兼具三種。
臨時性
memcached屬于這種類型。所謂臨時性就是 “數(shù)據(jù)有可能丟失”的意思。memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非常快,但是當(dāng)memcached停止的時候,數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無法操作超出內(nèi)存容量的數(shù)據(jù)(舊數(shù)據(jù)會丟失)。
在內(nèi)存中保存數(shù)據(jù)
可以進行非??焖俚谋4婧妥x取處理
數(shù)據(jù)有可能丟失
永久性
Tokyo Tyrant、Flare、ROMA等屬于這種類型。和臨時性相反,所謂永久性就是“數(shù)據(jù)不會丟失”的意思。這里的key-value存儲不像memcached那樣在內(nèi)存中保存數(shù)據(jù),而是把數(shù)據(jù)保存在硬盤上。與memcached在內(nèi)存中處理數(shù)據(jù)比起來,由于必然要發(fā)生對硬盤的IO操作,所以性能上還是有差距的。但數(shù)據(jù)不會丟失是它最大的優(yōu)勢。
在硬盤上保存數(shù)據(jù)
可以進行非??焖俚谋4婧妥x取處理(但無法與memcached相比)
數(shù)據(jù)不會丟失
兩者兼具
Redis屬于這種類型。Redis有些特殊,臨時性和永久性兼具,且集合了臨時性key-value存儲和永久性key-value存儲的優(yōu)點。Redis首先把數(shù)據(jù)保存到內(nèi)存中,在滿足特定條件(默認是15分鐘一次以上,5分鐘內(nèi)10個以上,1分鐘內(nèi)10000個以上的key發(fā)生變更)的時候?qū)?shù)據(jù)寫入到硬盤中。這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過寫入硬盤來保證數(shù)據(jù)的永久性。這種類型的數(shù)據(jù)庫特別適合于處理數(shù)組類型的數(shù)據(jù)。
同時在內(nèi)存和硬盤上保存數(shù)據(jù)
可以進行非??焖俚谋4婧妥x取處理
保存在硬盤上的數(shù)據(jù)不會消失(可以恢復(fù))
適合于處理數(shù)組類型的數(shù)據(jù)
面向文檔的數(shù)據(jù)庫
MongoDB、CouchDB屬于這種類型。它們屬于NoSQL數(shù)據(jù)庫,但與key-value存儲相異。
不定義表結(jié)構(gòu)
面向文檔的數(shù)據(jù)庫具有以下特征:即使不定義表結(jié)構(gòu),也可以像定義了表結(jié)構(gòu)一樣使用。關(guān)系型數(shù)據(jù)庫在變更表結(jié)構(gòu)時比較費事,而且為了保持一致性還需修改程序。然而NoSQL數(shù)據(jù)庫則可省去這些麻煩(通常程序都是正確的),確實是方便快捷。
可以使用復(fù)雜的查詢條件
跟key-value存儲不同的是,面向文檔的數(shù)據(jù)庫可以通過復(fù)雜的查詢條件來獲取數(shù)據(jù)。雖然不具備事務(wù)處理和JOIN這些關(guān)系型數(shù)據(jù)庫所具有的處理能力,但除此以外的其他處理基本上都能實現(xiàn)。這是非常容易使用的NoSQL數(shù)據(jù)庫。
不需要定義表結(jié)構(gòu)
可以利用復(fù)雜的查詢條件
面向列的數(shù)據(jù)庫
Cassandra、Hbase、HyperTable屬于這種類型。由于近年來數(shù)據(jù)量出現(xiàn)爆發(fā)性增長,這種類型的NoSQL數(shù)據(jù)庫尤其引人注目。
面向行的數(shù)據(jù)庫和面向列的數(shù)據(jù)庫
普通的關(guān)系型數(shù)據(jù)庫都是以行為單位來存儲數(shù)據(jù)的,擅長進行以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關(guān)系型數(shù)據(jù)庫也被稱為面向行的數(shù)據(jù)庫。相反,面向列的數(shù)據(jù)庫是以列為單位來存儲數(shù)據(jù)的,擅長以列為單位讀入數(shù)據(jù)。
高擴展性
面向列的數(shù)據(jù)庫具有高擴展性,即使數(shù)據(jù)增加也不會降低相應(yīng)的處理速度(特別是寫入速度),所以它主要應(yīng)用于需要處理大量數(shù)據(jù)的情況。另外,利用面向列的數(shù)據(jù)庫的優(yōu)勢,把它作為批處理程序的存儲器來對大量數(shù)據(jù)進行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫跟現(xiàn)行數(shù)據(jù)庫存儲的思維方式有很大不同,應(yīng)用起來十分困難。
高擴展性(特別是寫入處理)
應(yīng)用十分困難
最近,像Twitter和Facebook這樣需要對大量數(shù)據(jù)進行更新和查詢的網(wǎng)絡(luò)服務(wù)不斷增加,面向列的數(shù)據(jù)庫的優(yōu)勢對其中一些服務(wù)是非常有用的,但是由于這與本書所要介紹的內(nèi)容關(guān)系不大,就不進行詳細介紹了。
總結(jié):
NoSQL并不是No-SQL,而是指Not Only SQL。
NoSQL的出現(xiàn)是為了彌補SQL數(shù)據(jù)庫因為事務(wù)等機制帶來的對海量數(shù)據(jù)、高并發(fā)請求的處理的性能上的欠缺。
NoSQL不是為了替代SQL而出現(xiàn)的,它是一種替補方案,而不是解決方案的首選。
絕大多數(shù)的NoSQL產(chǎn)品都是基于大內(nèi)存和高性能隨機讀寫的(比如具有更高性能的固態(tài)硬盤陣列),一般的小型企業(yè)在選擇NoSQL時一定要慎重!不要為了NoSQL而NoSQL,可能會導(dǎo)致花了冤枉錢又耽擱了項目進程。
NoSQL不是萬能的,但在大型項目中,你往往需要它!
先存在nosql 中,然后存在數(shù)據(jù)庫中,
然后過一段時間 (驗證網(wǎng)站無異常),清理掉訪問日志。
但是這些規(guī)則指定好之后,不要外傳,屬于公司內(nèi)部機密。
請采納!
Hadoop
文件系統(tǒng):文件系統(tǒng)是用來存儲和管理文件,并且提供文件的查詢、增加、刪除等操作。
直觀上的體驗:在shell窗口輸入 ls 命令,就可以看到當(dāng)前目錄下的文件夾、文件。
文件存儲在哪里?硬盤
一臺只有250G硬盤的電腦,如果需要存儲500G的文件可以怎么辦?先將電腦硬盤擴容至少250G,再將文件分割成多塊,放到多塊硬盤上儲存。
通過 hdfs dfs -ls 命令可以查看分布式文件系統(tǒng)中的文件,就像本地的ls命令一樣。
HDFS在客戶端上提供了查詢、新增和刪除的指令,可以實現(xiàn)將分布在多臺機器上的文件系統(tǒng)進行統(tǒng)一的管理。
在分布式文件系統(tǒng)中,一個大文件會被切分成塊,分別存儲到幾臺機器上。結(jié)合上文中提到的那個存儲500G大文件的那個例子,這500G的文件會按照一定的大小被切分成若干塊,然后分別存儲在若干臺機器上,然后提供統(tǒng)一的操作接口。
看到這里,不少人可能會覺得,分布式文件系統(tǒng)不過如此,很簡單嘛。事實真的是這樣的么?
潛在問題
假如我有一個1000臺機器組成的分布式系統(tǒng),一臺機器每天出現(xiàn)故障的概率是0.1%,那么整個系統(tǒng)每天出現(xiàn)故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一個容錯機制來保證發(fā)生差錯時文件依然可以讀出,這里暫時先不展開介紹。
如果要存儲PB級或者EB級的數(shù)據(jù),成千上萬臺機器組成的集群是很常見的,所以說分布式系統(tǒng)比單機系統(tǒng)要復(fù)雜得多呀。
這是一張HDFS的架構(gòu)簡圖:
client通過nameNode了解數(shù)據(jù)在哪些DataNode上,從而發(fā)起查詢。此外,不僅是查詢文件,寫入文件的時候也是先去請教NameNode,看看應(yīng)該往哪個DateNode中去寫。
為了某一份數(shù)據(jù)只寫入到一個Datanode中,而這個Datanode因為某些原因出錯無法讀取的問題,需要通過冗余備份的方式來進行容錯處理。因此,HDFS在寫入一個數(shù)據(jù)塊的時候,不會僅僅寫入一個DataNode,而是會寫入到多個DataNode中,這樣,如果其中一個DataNode壞了,還可以從其余的DataNode中拿到數(shù)據(jù),保證了數(shù)據(jù)不丟失。
實際上,每個數(shù)據(jù)塊在HDFS上都會保存多份,保存在不同的DataNode上。這種是犧牲一定存儲空間換取可靠性的做法。
接下來我們來看一下完整的文件寫入的流程:
大文件要寫入HDFS,client端根據(jù)配置將大文件分成固定大小的塊,然后再上傳到HDFS。
讀取文件的流程:
1、client詢問NameNode,我要讀取某個路徑下的文件,麻煩告訴我這個文件都在哪些DataNode上?
2、NameNode回復(fù)client,這個路徑下的文件被切成了3塊,分別在DataNode1、DataNode3和DataNode4上
3、client去找DataNode1、DataNode3和DataNode4,拿到3個文件塊,通過stream讀取并且整合起來
文件寫入的流程:
1、client先將文件分塊,然后詢問NameNode,我要寫入一個文件到某個路徑下,文件有3塊,應(yīng)該怎么寫?
2、NameNode回復(fù)client,可以分別寫到DataNode1、DataNode2、DataNode3、DataNode4上,記住,每個塊重復(fù)寫3份,總共是9份
3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把數(shù)據(jù)寫到他們上面
出于容錯的考慮,每個數(shù)據(jù)塊有3個備份,但是3個備份快都直接由client端直接寫入勢必會帶來client端過重的寫入壓力,這個點是否有更好的解決方案呢?回憶一下mysql主備之間是通過binlog文件進行同步的,HDFS當(dāng)然也可以借鑒這個思想,數(shù)據(jù)其實只需要寫入到一個datanode上,然后由datanode之間相互進行備份同步,減少了client端的寫入壓力,那么至于是一個datanode寫入成功即成功,還是需要所有的參與備份的datanode返回寫入成功才算成功,是可靠性配置的策略,當(dāng)然這個設(shè)置會影響到數(shù)據(jù)寫入的吞吐率,我們可以看到可靠性和效率永遠是“魚和熊掌不可兼得”的。
潛在問題
NameNode確實會回放editlog,但是不是每次都從頭回放,它會先加載一個fsimage,這個文件是之前某一個時刻整個NameNode的文件元數(shù)據(jù)的內(nèi)存快照,然后再在這個基礎(chǔ)上回放editlog,完成后,會清空editlog,再把當(dāng)前文件元數(shù)據(jù)的內(nèi)存狀態(tài)寫入fsimage,方便下一次加載。
這樣,全量回放就變成了增量回放,但是如果NameNode長時間未重啟過,editlog依然會比較大,恢復(fù)的時間依然比較長,這個問題怎么解呢?
SecondNameNode是一個NameNode內(nèi)的定時任務(wù)線程,它會定期地將editlog寫入fsimage,然后情況原來的editlog,從而保證editlog的文件大小維持在一定大小。
NameNode掛了, SecondNameNode并不能替代NameNode,所以如果集群中只有一個NameNode,它掛了,整個系統(tǒng)就掛了。hadoop2.x之前,整個集群只能有一個NameNode,是有可能發(fā)生單點故障的,所以hadoop1.x有本身的不穩(wěn)定性。但是hadoop2.x之后,我們可以在集群中配置多個NameNode,就不會有這個問題了,但是配置多個NameNode,需要注意的地方就更多了,系統(tǒng)就更加復(fù)雜了。
俗話說“一山不容二虎”,兩個NameNode只能有一個是活躍狀態(tài)active,另一個是備份狀態(tài)standby,我們看一下兩個NameNode的架構(gòu)圖。
兩個NameNode通過JournalNode實現(xiàn)同步editlog,保持狀態(tài)一致可以相互替換。
因為active的NameNode掛了之后,standby的NameNode要馬上接替它,所以它們的數(shù)據(jù)要時刻保持一致,在寫入數(shù)據(jù)的時候,兩個NameNode內(nèi)存中都要記錄數(shù)據(jù)的元信息,并保持一致。這個JournalNode就是用來在兩個NameNode中同步數(shù)據(jù)的,并且standby NameNode實現(xiàn)了SecondNameNode的功能。
進行數(shù)據(jù)同步操作的過程如下:
active NameNode有操作之后,它的editlog會被記錄到JournalNode中,standby NameNode會從JournalNode中讀取到變化并進行同步,同時standby NameNode會監(jiān)聽記錄的變化。這樣做的話就是實時同步了,并且standby NameNode就實現(xiàn)了SecondNameNode的功能。
優(yōu)點:
缺點:
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,
泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲。
(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 關(guān)系型數(shù)據(jù)庫與NoSQL的區(qū)別?
3.1 RDBMS
高度組織化結(jié)構(gòu)化數(shù)據(jù)
結(jié)構(gòu)化查詢語言(SQL)
數(shù)據(jù)和關(guān)系都存儲在單獨的表中。
數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言
嚴(yán)格的一致性
基礎(chǔ)事務(wù)
ACID
關(guān)系型數(shù)據(jù)庫遵循ACID規(guī)則
事務(wù)在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:
A (Atomicity) 原子性
原子性很容易理解,也就是說事務(wù)里的所有操作要么全部做完,要么都不做,事務(wù)成功的條件是事務(wù)里的所有操作都成功,只要有一個操作失敗,整個事務(wù)就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。
C (Consistency) 一致性
一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務(wù)的運行不會改變數(shù)據(jù)庫原本的一致性約束。
I (Isolation) 獨立性
所謂的獨立性是指并發(fā)的事務(wù)之間不會互相影響,如果一個事務(wù)要訪問的數(shù)據(jù)正在被另外一個事務(wù)修改,只要另外一個事務(wù)未提交,它所訪問的數(shù)據(jù)就不受未提交事務(wù)的影響。比如現(xiàn)有有個交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事務(wù)提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機也不會丟失。
3.2 NoSQL
代表著不僅僅是SQL
沒有聲明性查詢語言
沒有預(yù)定義的模式
鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫
最終一致性,而非ACID屬性
非結(jié)構(gòu)化和不可預(yù)知的數(shù)據(jù)
CAP定理
高性能,高可用性和可伸縮性
分布式數(shù)據(jù)庫中的CAP原理(了解)
CAP定理:
Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的
Availability(可用性), 好的響應(yīng)性能
Partition tolerance(分區(qū)容錯性) 可靠性
P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運作。
定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。
CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,
因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:
CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴展性上不太強大。
CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。
AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐σ恢滦砸蟮鸵恍?。
CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。
而由于當(dāng)前的網(wǎng)絡(luò)硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。
所以我們只能在一致性和可用性之間進行權(quán)衡,沒有NoSQL系統(tǒng)能同時保證這三點。
說明:C:強一致性 A:高可用性 P:分布式容忍性
舉例:
CA:傳統(tǒng)Oracle數(shù)據(jù)庫
AP:大多數(shù)網(wǎng)站架構(gòu)的選擇
CP:Redis、Mongodb
注意:分布式架構(gòu)的時候必須做出取舍。
一致性和可用性之間取一個平衡。多余大多數(shù)web應(yīng)用,其實并不需要強一致性。
因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。
4. 當(dāng)下NoSQL的經(jīng)典應(yīng)用
當(dāng)下的應(yīng)用是 SQL 與 NoSQL 一起使用的。
代表項目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型機,很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設(shè)備,也很貴的。
難點:
數(shù)據(jù)類型多樣性。
數(shù)據(jù)源多樣性和變化重構(gòu)。
數(shù)據(jù)源改造而服務(wù)平臺不需要大面積重構(gòu)。
NoSQL數(shù)據(jù)庫有很多種,實現(xiàn)方式差別很大。有接近SQL查詢方式的,也有純粹的鍵值對查詢。
對于K-V型數(shù)據(jù)庫,比較典型的是Redis,系統(tǒng)提供了get、set之類的命令用于增刪改查。關(guān)鍵是鍵值對的鍵和值怎么設(shè)計。
No SQL DB是一種和關(guān)系型數(shù)據(jù)庫相對應(yīng)的對象數(shù)據(jù)庫。按照數(shù)據(jù)模型保存性質(zhì)將當(dāng)前NoSQL分為四種:
1.Key-value stores鍵值存儲, 保存keys+BLOBs
2.Table-oriented 面向表, 主要有Google的BigTable和Cassandra.
3.Document-oriented面向文本, 文本是一種類似XML文檔,MongoDB 和 CouchDB
4.Graph-oriented 面向圖論. 如Neo4J.
關(guān)系型數(shù)據(jù)庫的弊端:
關(guān)系型數(shù)據(jù)庫的歷史已經(jīng)有30余年了,因此,在某些情況下,關(guān)系型數(shù)據(jù)庫的弱點就會暴露出來:
1. “對象-關(guān)系 阻抗不匹配”。關(guān)系模型和面向?qū)ο竽P驮诟拍钌洗嬖谔烊坏牟黄ヅ涞牡胤剑热鐚ο竽P彤?dāng)中特有的“繼承”,“組合”,“聚合”,“依賴”的概念在關(guān)系模型當(dāng)中是不存在的。
2. “模式演進”。即隨著時間的推移,需要對數(shù)據(jù)庫模式進行調(diào)整以便適應(yīng)新的需求,然而,對數(shù)據(jù)庫模式的調(diào)整是的成本很高的動作,因此很多設(shè)計師在系統(tǒng)設(shè)計之初會設(shè)計一個兼容性很強的數(shù)據(jù)庫模式,以應(yīng)對將來可能出現(xiàn)的需求,然而在現(xiàn)在的web系統(tǒng)開發(fā)過程中,系統(tǒng)的變更更加頻繁,幾乎無法預(yù)先設(shè)計出一種“萬能”的數(shù)據(jù)庫模式以滿足所有的需求,因此 模式演進的弊端就愈發(fā)凸顯。
3. 關(guān)系型數(shù)據(jù)庫處理 稀疏表時的性能非常差。
4. network-oriented data 很適合處理 人工智能、社交網(wǎng)絡(luò)中的一些需求。
所以,各種各樣的No SQL DB 出現(xiàn)了,這里只簡單介紹下Neo4J 的基本知識。
Neo 數(shù)據(jù)模型
Neo4J 是一個基于圖實現(xiàn)的No SQL DB, 其基本的數(shù)據(jù)類型有如下幾種:
Node, Relationship, Property.
Node 對應(yīng)于圖中的 節(jié)點,Relationship 對應(yīng)圖中的邊,Node 和 Relationship 都可以擁有Property,
Property 的數(shù)據(jù)結(jié)構(gòu)為。
數(shù)據(jù)遍歷
Neo 提供了Traverser對數(shù)據(jù)中的數(shù)據(jù)進行遍歷。