碼字不易,如果此文對你有所幫助,請幫忙點贊,感謝!
創(chuàng)新互聯(lián)建站網(wǎng)站建設由有經(jīng)驗的網(wǎng)站設計師、開發(fā)人員和項目經(jīng)理組成的專業(yè)建站團隊,負責網(wǎng)站視覺設計、用戶體驗優(yōu)化、交互設計和前端開發(fā)等方面的工作,以確保網(wǎng)站外觀精美、成都網(wǎng)站設計、網(wǎng)站建設易于使用并且具有良好的響應性。
一. 雙線性插值法原理:
? ? ① 何為線性插值?
? ? 插值就是在兩個數(shù)之間插入一個數(shù),線性插值原理圖如下:
? ? ② 各種插值法:
? ? 插值法的第一步都是相同的,計算目標圖(dstImage)的坐標點對應原圖(srcImage)中哪個坐標點來填充,計算公式為:
? ? srcX = dstX * (srcWidth/dstWidth)
? ? srcY = dstY * (srcHeight/dstHeight)
? ? (dstX,dstY)表示目標圖像的某個坐標點,(srcX,srcY)表示與之對應的原圖像的坐標點。srcWidth/dstWidth 和 srcHeight/dstHeight 分別表示寬和高的放縮比。
? ? 那么問題來了,通過這個公式算出來的 srcX, scrY 有可能是小數(shù),但是原圖像坐標點是不存在小數(shù)的,都是整數(shù),得想辦法把它轉(zhuǎn)換成整數(shù)才行。
不同插值法的區(qū)別就體現(xiàn)在 srcX, scrY 是小數(shù)時,怎么將其變成整數(shù)去取原圖像中的像素值。
最近鄰插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入選取最接近的整數(shù)。這樣的做法會導致像素變化不連續(xù),在目標圖像中產(chǎn)生鋸齒邊緣。
雙線性插值(Bilinear Interpolation):雙線性就是利用與坐標軸平行的兩條直線去把小數(shù)坐標分解到相鄰的四個整數(shù)坐標點。權(quán)重與距離成反比。
? ??雙三次插值(Bicubic Interpolation):與雙線性插值類似,只不過用了相鄰的16個點。但是需要注意的是,前面兩種方法能保證兩個方向的坐標權(quán)重和為1,但是雙三次插值不能保證這點,所以可能出現(xiàn)像素值越界的情況,需要截斷。
? ? ③ 雙線性插值算法原理
假如我們想得到未知函數(shù) f 在點 P = (x, y) 的值,假設我們已知函數(shù) f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四個點的值。最常見的情況,f就是一個像素點的像素值。首先在 x 方向進行線性插值,然后再在 y 方向上進行線性插值,最終得到雙線性插值的結(jié)果。
④ 舉例說明
二. python實現(xiàn)灰度圖像雙線性插值算法:
灰度圖像雙線性插值放大縮小
import numpy as np
import math
import cv2
def double_linear(input_signal, zoom_multiples):
'''
雙線性插值
:param input_signal: 輸入圖像
:param zoom_multiples: 放大倍數(shù)
:return: 雙線性插值后的圖像
'''
input_signal_cp = np.copy(input_signal)? # 輸入圖像的副本
input_row, input_col = input_signal_cp.shape # 輸入圖像的尺寸(行、列)
# 輸出圖像的尺寸
output_row = int(input_row * zoom_multiples)
output_col = int(input_col * zoom_multiples)
output_signal = np.zeros((output_row, output_col)) # 輸出圖片
for i in range(output_row):
? ? for j in range(output_col):
? ? ? ? # 輸出圖片中坐標 (i,j)對應至輸入圖片中的最近的四個點點(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值
? ? ? ? temp_x = i / output_row * input_row
? ? ? ? temp_y = j / output_col * input_col
? ? ? ? x1 = int(temp_x)
? ? ? ? y1 = int(temp_y)
? ? ? ? x2 = x1
? ? ? ? y2 = y1 + 1
? ? ? ? x3 = x1 + 1
? ? ? ? y3 = y1
? ? ? ? x4 = x1 + 1
? ? ? ? y4 = y1 + 1
? ? ? ? u = temp_x - x1
? ? ? ? v = temp_y - y1
? ? ? ? # 防止越界
? ? ? ? if x4 = input_row:
? ? ? ? ? ? x4 = input_row - 1
? ? ? ? ? ? x2 = x4
? ? ? ? ? ? x1 = x4 - 1
? ? ? ? ? ? x3 = x4 - 1
? ? ? ? if y4 = input_col:
? ? ? ? ? ? y4 = input_col - 1
? ? ? ? ? ? y3 = y4
? ? ? ? ? ? y1 = y4 - 1
? ? ? ? ? ? y2 = y4 - 1
? ? ? ? # 插值
? ? ? ? output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])
return output_signal
# Read image
img = cv2.imread("../paojie_g.jpg",0).astype(np.float)
out = double_linear(img,2).astype(np.uint8)
# Save result
cv2.imshow("result", out)
cv2.imwrite("out.jpg", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
三. 灰度圖像雙線性插值實驗結(jié)果:
四. 彩色圖像雙線性插值python實現(xiàn)
def BiLinear_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
img=np.pad(img,((0,1),(0,1),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH-1):
? ? for j in range(dstW-1):
? ? ? ? scrx=(i+1)*(scrH/dstH)
? ? ? ? scry=(j+1)*(scrW/dstW)
? ? ? ? x=math.floor(scrx)
? ? ? ? y=math.floor(scry)
? ? ? ? u=scrx-x
? ? ? ? v=scry-y
? ? ? ? retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('3.png')
五. 彩色圖像雙線性插值實驗結(jié)果:
六. 最近鄰插值算法和雙三次插值算法可參考:
① 最近鄰插值算法:
???
? ? ② 雙三次插值算法:
七. 參考內(nèi)容:
? ??
???
spline函數(shù)可以實現(xiàn)三次樣條插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi這兩個函數(shù)也是三次樣條插值函數(shù),具體你可以help一下!
在算法分析過程中,我們經(jīng)常會遇到數(shù)據(jù)需要處理插值的過程,為了方便理解,我們這里給出相關(guān)概念和源程序,希望能幫助到您!
已知坐標 (x0, y0) 與 (x1, y1),要求得區(qū)間 [x0, x1] 內(nèi)某一點位置 x 在直線上的y值。兩點間直線方程,我們有
那么,如何實現(xiàn)它呢?
依據(jù)數(shù)值分析,我們可以發(fā)現(xiàn)存在遞歸情況
執(zhí)行結(jié)果;
此外,我們也可以對一維線性插值使用指定得庫:numpy.interp
將一維分段線性插值返回給具有給定離散數(shù)據(jù)點(xp,fp)的函數(shù),該函數(shù)在x處求值
檢查: 如果xp沒有增加,則結(jié)果是無意義的。
另一方面:線性插值是一種使用線性多項式進行曲線擬合的方法,可以在一組離散的已知數(shù)據(jù)點范圍內(nèi)構(gòu)造新的數(shù)據(jù)點。
實際上,這可能意味著您可以推斷已知位置點之間的新的估計位置點,以創(chuàng)建更高頻率的數(shù)據(jù)或填寫缺失值。
以最簡單的形式,可視化以下圖像:
在此,已知數(shù)據(jù)點在位置(1,1)和(3,3)處為紅色。使用線性迭代,我們可以在它們之間添加一個點,該點可以顯示為藍色。
這是一個非常簡單的問題,如果我們擁有更多已知的數(shù)據(jù)點,并且想要特定頻率的插值點又該怎么辦呢?
這可以使用numpy包中的兩個函數(shù)在Python中非常簡單地實現(xiàn):
我們有十個已知點,但是假設我們要一個50個序列。
我們可以使用np.linspace做到這一點;序列的起點,序列的終點以及我們想要的數(shù)據(jù)點總數(shù)
起點和終點將與您的初始x值的起點和終點相同,因此在此我們指定0和2 * pi。我們還指定了對序列中50個數(shù)據(jù)點的請求
現(xiàn)在,進行線性插值!使用np.interp,我們傳遞所需數(shù)據(jù)點的列表(我們在上面創(chuàng)建的50個),然后傳遞原始的x和y值
現(xiàn)在,讓我們繪制原始值,然后覆蓋新的內(nèi)插值!
您還可以將此邏輯應用于時間序列中的x和y坐標。在這里,您將根據(jù)時間對x值進行插值,然后針對時間對y值進行插值。如果您想在時間序列中使用更頻繁的數(shù)據(jù)點(例如,您想在視頻幀上疊加一些數(shù)據(jù)),或者缺少數(shù)據(jù)點或時間戳不一致,這將特別有用。
讓我們?yōu)橐粋€場景創(chuàng)建一些數(shù)據(jù),在該場景中,在60秒的比賽時間里,一輛賽車僅發(fā)出十個位置(x&y)輸出(在整個60秒的時間內(nèi),時間也不一致):
參考文獻