真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

nosql數(shù)據(jù)庫集群,NoSql數(shù)據(jù)庫

一、NoSQL數(shù)據(jù)庫簡介

Web1.0的時代,數(shù)據(jù)訪問量很有限,用一夫當(dāng)關(guān)的高性能的單點服務(wù)器可以解決大部分問題。

創(chuàng)新互聯(lián)建站專業(yè)為企業(yè)提供順河網(wǎng)站建設(shè)、順河做網(wǎng)站、順河網(wǎng)站設(shè)計、順河網(wǎng)站制作等企業(yè)網(wǎng)站建設(shè)、網(wǎng)頁設(shè)計與制作、順河企業(yè)網(wǎng)站模板建站服務(wù),十多年順河做網(wǎng)站經(jīng)驗,不只是建網(wǎng)站,更提供有價值的思路和整體網(wǎng)絡(luò)服務(wù)。

隨著Web2.0的時代的到來,用戶訪問量大幅度提升,同時產(chǎn)生了大量的用戶數(shù)據(jù)。加上后來的智能移動設(shè)備的普及,所有的互聯(lián)網(wǎng)平臺都面臨了巨大的性能挑戰(zhàn)。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關(guān)系型的數(shù)據(jù)庫。

NoSQL 不依賴業(yè)務(wù)邏輯方式存儲,而以簡單的key-value模式存儲。因此大大的增加了數(shù)據(jù)庫的擴(kuò)展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式數(shù)據(jù)庫 列式數(shù)據(jù)庫 Hbase Hbase

HBase是Hadoop項目中的數(shù)據(jù)庫。它用于需要對大量的數(shù)據(jù)進(jìn)行隨機(jī)、實時的讀寫操作的場景中。

HBase的目標(biāo)就是處理數(shù)據(jù)量非常龐大的表,可以用普通的計算機(jī)處理超過10億行數(shù)據(jù),還可處理有數(shù)百萬列元素的數(shù)據(jù)表。

Cassandra Cassandra

Apache Cassandra是一款免費(fèi)的開源NoSQL數(shù)據(jù)庫,其設(shè)計目的在于管理由大量商用服務(wù)器構(gòu)建起來的龐大集群上的海量數(shù)據(jù)集(數(shù)據(jù)量通常達(dá)到PB級別)。在眾多顯著特性當(dāng)中,Cassandra最為卓越的長處是對寫入及讀取操作進(jìn)行規(guī)模調(diào)整,而且其不強(qiáng)調(diào)主集群的設(shè)計思路能夠以相對直觀的方式簡化各集群的創(chuàng)建與擴(kuò)展流程。

主要應(yīng)用:社會關(guān)系,公共交通網(wǎng)絡(luò),地圖及網(wǎng)絡(luò)拓譜(n*(n-1)/2)

nosql數(shù)據(jù)庫有哪些???

NoSQL(NoSQL

=

Not

Only

SQL

),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運(yùn)動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)據(jù)存儲,相對于鋪天蓋地的關(guān)系型數(shù)據(jù)庫運(yùn)用,這一概念無疑是一種全新的思維的注入。

隨著大數(shù)據(jù)的不斷發(fā)展,非關(guān)系型的數(shù)據(jù)庫現(xiàn)在成了一個極其熱門的新領(lǐng)域,非關(guān)系數(shù)據(jù)庫產(chǎn)品的發(fā)展非常迅速。現(xiàn)今的計算機(jī)體系結(jié)構(gòu)在數(shù)據(jù)存儲方面要有龐大的水平擴(kuò)展性,而NoSQL也正是致力于改變這一現(xiàn)狀。目前Google的

BigTable和Amazon

的Dynamo使用的就是NoSQL型數(shù)據(jù)庫,本文介紹了10種出色的NoSQL數(shù)據(jù)庫。

雖然NoSQL流行語火起來才短短一年的時間,但是不可否認(rèn),現(xiàn)在已經(jīng)開始了第二代運(yùn)動。盡管早期的堆棧代碼只能算是一種實驗,然而現(xiàn)在的系統(tǒng)已經(jīng)更加的成熟、穩(wěn)定。不過現(xiàn)在也面臨著一個嚴(yán)酷的事實:技術(shù)越來越成熟——以至于原來很好的NoSQL數(shù)據(jù)存儲不得不進(jìn)行重寫,也有少數(shù)人認(rèn)為這就是所謂的2.0版本。這里列出一些比較知名的NoSQL工具,可以為大數(shù)據(jù)建立快速、可擴(kuò)展的存儲庫。

給一個地址吧

目前哪些NoSQL數(shù)據(jù)庫應(yīng)用廣泛,各有什么特點

特點:

它們可以處理超大量的數(shù)據(jù)。

它們運(yùn)行在便宜的PC服務(wù)器集群上。

PC集群擴(kuò)充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點:

易擴(kuò)展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴(kuò)展。也無形之間,在架構(gòu)的層面上帶來了可擴(kuò)展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細(xì)粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個大數(shù)據(jù)管理平臺建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強(qiáng)大的圖形處理平臺,具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

Gephi

它可以用來對信息進(jìn)行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進(jìn)行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商?!蹦壳埃珻loudera的平臺已經(jīng)擁有200多個付費(fèi)客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進(jìn)開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當(dāng)企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負(fù)載管理等眾多技術(shù)?!?/p>

Intel

和AWS類似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來說,就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場營銷。

nosql數(shù)據(jù)庫的四種類型

一般將NoSQL數(shù)據(jù)庫分為四大類:鍵值(Key-Value)存儲數(shù)據(jù)庫、列存儲數(shù)據(jù)庫、文檔型數(shù)據(jù)庫和圖形(Graph)數(shù)據(jù)庫。它們的數(shù)據(jù)模型、優(yōu)缺點、典型應(yīng)用場景。

鍵值(Key-Value)存儲數(shù)據(jù)庫Key指向Value的鍵值對,通常用hash表來實現(xiàn)查找速度快數(shù)據(jù)無結(jié)構(gòu)化(通常只被當(dāng)作字符串或者二進(jìn)制數(shù)據(jù))內(nèi)容緩存,主要用于處理大量數(shù)據(jù)的高訪問負(fù)載,也用于一些日志系統(tǒng)等。

列存儲數(shù)據(jù)庫,以列簇式存儲,將同一列數(shù)據(jù)存在一起查找速度快,可擴(kuò)展性強(qiáng),更容易進(jìn)行分布式擴(kuò)展功能相對局限分布式的文件系統(tǒng)。

文檔型數(shù)據(jù)庫,Key-Value對應(yīng)的鍵值對,Value為結(jié)構(gòu)化數(shù)據(jù),數(shù)據(jù)結(jié)構(gòu)要求不嚴(yán)格,表結(jié)構(gòu)可變(不需要像關(guān)系型數(shù)據(jù)庫一樣需預(yù)先定義表結(jié)構(gòu)),查詢性能不高,而且缺乏統(tǒng)一的查詢語法,Web應(yīng)用。

圖形(Graph)數(shù)據(jù)庫,圖結(jié)構(gòu),利用圖結(jié)構(gòu)相關(guān)算法(如最短路徑尋址,N度關(guān)系查找等),很多時候需要對整個圖做計算才能得出需要的信息,而且這種結(jié)構(gòu)不太好做分布式的集群方案,社交網(wǎng)絡(luò),推薦系統(tǒng)等。

什么是NoSQL數(shù)據(jù)庫?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,

泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲。

(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴(kuò)展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 關(guān)系型數(shù)據(jù)庫與NoSQL的區(qū)別?

3.1 RDBMS

高度組織化結(jié)構(gòu)化數(shù)據(jù)

結(jié)構(gòu)化查詢語言(SQL)

數(shù)據(jù)和關(guān)系都存儲在單獨(dú)的表中。

數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言

嚴(yán)格的一致性

基礎(chǔ)事務(wù)

ACID

關(guān)系型數(shù)據(jù)庫遵循ACID規(guī)則

事務(wù)在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:

A (Atomicity) 原子性

原子性很容易理解,也就是說事務(wù)里的所有操作要么全部做完,要么都不做,事務(wù)成功的條件是事務(wù)里的所有操作都成功,只要有一個操作失敗,整個事務(wù)就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。

C (Consistency) 一致性

一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務(wù)的運(yùn)行不會改變數(shù)據(jù)庫原本的一致性約束。

I (Isolation) 獨(dú)立性

所謂的獨(dú)立性是指并發(fā)的事務(wù)之間不會互相影響,如果一個事務(wù)要訪問的數(shù)據(jù)正在被另外一個事務(wù)修改,只要另外一個事務(wù)未提交,它所訪問的數(shù)據(jù)就不受未提交事務(wù)的影響。比如現(xiàn)有有個交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事務(wù)提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機(jī)也不會丟失。

3.2 NoSQL

代表著不僅僅是SQL

沒有聲明性查詢語言

沒有預(yù)定義的模式

鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫

最終一致性,而非ACID屬性

非結(jié)構(gòu)化和不可預(yù)知的數(shù)據(jù)

CAP定理

高性能,高可用性和可伸縮性

分布式數(shù)據(jù)庫中的CAP原理(了解)

CAP定理:

Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的

Availability(可用性), 好的響應(yīng)性能

Partition tolerance(分區(qū)容錯性) 可靠性

P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運(yùn)作。

定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。

CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,

因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:

CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴(kuò)展性上不太強(qiáng)大。

CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。

AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐σ恢滦砸蟮鸵恍?。

CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。

而由于當(dāng)前的網(wǎng)絡(luò)硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。

所以我們只能在一致性和可用性之間進(jìn)行權(quán)衡,沒有NoSQL系統(tǒng)能同時保證這三點。

說明:C:強(qiáng)一致性 A:高可用性 P:分布式容忍性

舉例:

CA:傳統(tǒng)Oracle數(shù)據(jù)庫

AP:大多數(shù)網(wǎng)站架構(gòu)的選擇

CP:Redis、Mongodb

注意:分布式架構(gòu)的時候必須做出取舍。

一致性和可用性之間取一個平衡。多余大多數(shù)web應(yīng)用,其實并不需要強(qiáng)一致性。

因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。

4. 當(dāng)下NoSQL的經(jīng)典應(yīng)用

當(dāng)下的應(yīng)用是 SQL 與 NoSQL 一起使用的。

代表項目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型機(jī),很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設(shè)備,也很貴的。

難點:

數(shù)據(jù)類型多樣性。

數(shù)據(jù)源多樣性和變化重構(gòu)。

數(shù)據(jù)源改造而服務(wù)平臺不需要大面積重構(gòu)。

NoSQL-HDFS-基本概念

Hadoop

文件系統(tǒng):文件系統(tǒng)是用來存儲和管理文件,并且提供文件的查詢、增加、刪除等操作。

直觀上的體驗:在shell窗口輸入 ls 命令,就可以看到當(dāng)前目錄下的文件夾、文件。

文件存儲在哪里?硬盤

一臺只有250G硬盤的電腦,如果需要存儲500G的文件可以怎么辦?先將電腦硬盤擴(kuò)容至少250G,再將文件分割成多塊,放到多塊硬盤上儲存。

通過 hdfs dfs -ls 命令可以查看分布式文件系統(tǒng)中的文件,就像本地的ls命令一樣。

HDFS在客戶端上提供了查詢、新增和刪除的指令,可以實現(xiàn)將分布在多臺機(jī)器上的文件系統(tǒng)進(jìn)行統(tǒng)一的管理。

在分布式文件系統(tǒng)中,一個大文件會被切分成塊,分別存儲到幾臺機(jī)器上。結(jié)合上文中提到的那個存儲500G大文件的那個例子,這500G的文件會按照一定的大小被切分成若干塊,然后分別存儲在若干臺機(jī)器上,然后提供統(tǒng)一的操作接口。

看到這里,不少人可能會覺得,分布式文件系統(tǒng)不過如此,很簡單嘛。事實真的是這樣的么?

潛在問題

假如我有一個1000臺機(jī)器組成的分布式系統(tǒng),一臺機(jī)器每天出現(xiàn)故障的概率是0.1%,那么整個系統(tǒng)每天出現(xiàn)故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一個容錯機(jī)制來保證發(fā)生差錯時文件依然可以讀出,這里暫時先不展開介紹。

如果要存儲PB級或者EB級的數(shù)據(jù),成千上萬臺機(jī)器組成的集群是很常見的,所以說分布式系統(tǒng)比單機(jī)系統(tǒng)要復(fù)雜得多呀。

這是一張HDFS的架構(gòu)簡圖:

client通過nameNode了解數(shù)據(jù)在哪些DataNode上,從而發(fā)起查詢。此外,不僅是查詢文件,寫入文件的時候也是先去請教N(yùn)ameNode,看看應(yīng)該往哪個DateNode中去寫。

為了某一份數(shù)據(jù)只寫入到一個Datanode中,而這個Datanode因為某些原因出錯無法讀取的問題,需要通過冗余備份的方式來進(jìn)行容錯處理。因此,HDFS在寫入一個數(shù)據(jù)塊的時候,不會僅僅寫入一個DataNode,而是會寫入到多個DataNode中,這樣,如果其中一個DataNode壞了,還可以從其余的DataNode中拿到數(shù)據(jù),保證了數(shù)據(jù)不丟失。

實際上,每個數(shù)據(jù)塊在HDFS上都會保存多份,保存在不同的DataNode上。這種是犧牲一定存儲空間換取可靠性的做法。

接下來我們來看一下完整的文件寫入的流程:

大文件要寫入HDFS,client端根據(jù)配置將大文件分成固定大小的塊,然后再上傳到HDFS。

讀取文件的流程:

1、client詢問NameNode,我要讀取某個路徑下的文件,麻煩告訴我這個文件都在哪些DataNode上?

2、NameNode回復(fù)client,這個路徑下的文件被切成了3塊,分別在DataNode1、DataNode3和DataNode4上

3、client去找DataNode1、DataNode3和DataNode4,拿到3個文件塊,通過stream讀取并且整合起來

文件寫入的流程:

1、client先將文件分塊,然后詢問NameNode,我要寫入一個文件到某個路徑下,文件有3塊,應(yīng)該怎么寫?

2、NameNode回復(fù)client,可以分別寫到DataNode1、DataNode2、DataNode3、DataNode4上,記住,每個塊重復(fù)寫3份,總共是9份

3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把數(shù)據(jù)寫到他們上面

出于容錯的考慮,每個數(shù)據(jù)塊有3個備份,但是3個備份快都直接由client端直接寫入勢必會帶來client端過重的寫入壓力,這個點是否有更好的解決方案呢?回憶一下mysql主備之間是通過binlog文件進(jìn)行同步的,HDFS當(dāng)然也可以借鑒這個思想,數(shù)據(jù)其實只需要寫入到一個datanode上,然后由datanode之間相互進(jìn)行備份同步,減少了client端的寫入壓力,那么至于是一個datanode寫入成功即成功,還是需要所有的參與備份的datanode返回寫入成功才算成功,是可靠性配置的策略,當(dāng)然這個設(shè)置會影響到數(shù)據(jù)寫入的吞吐率,我們可以看到可靠性和效率永遠(yuǎn)是“魚和熊掌不可兼得”的。

潛在問題

NameNode確實會回放editlog,但是不是每次都從頭回放,它會先加載一個fsimage,這個文件是之前某一個時刻整個NameNode的文件元數(shù)據(jù)的內(nèi)存快照,然后再在這個基礎(chǔ)上回放editlog,完成后,會清空editlog,再把當(dāng)前文件元數(shù)據(jù)的內(nèi)存狀態(tài)寫入fsimage,方便下一次加載。

這樣,全量回放就變成了增量回放,但是如果NameNode長時間未重啟過,editlog依然會比較大,恢復(fù)的時間依然比較長,這個問題怎么解呢?

SecondNameNode是一個NameNode內(nèi)的定時任務(wù)線程,它會定期地將editlog寫入fsimage,然后情況原來的editlog,從而保證editlog的文件大小維持在一定大小。

NameNode掛了, SecondNameNode并不能替代NameNode,所以如果集群中只有一個NameNode,它掛了,整個系統(tǒng)就掛了。hadoop2.x之前,整個集群只能有一個NameNode,是有可能發(fā)生單點故障的,所以hadoop1.x有本身的不穩(wěn)定性。但是hadoop2.x之后,我們可以在集群中配置多個NameNode,就不會有這個問題了,但是配置多個NameNode,需要注意的地方就更多了,系統(tǒng)就更加復(fù)雜了。

俗話說“一山不容二虎”,兩個NameNode只能有一個是活躍狀態(tài)active,另一個是備份狀態(tài)standby,我們看一下兩個NameNode的架構(gòu)圖。

兩個NameNode通過JournalNode實現(xiàn)同步editlog,保持狀態(tài)一致可以相互替換。

因為active的NameNode掛了之后,standby的NameNode要馬上接替它,所以它們的數(shù)據(jù)要時刻保持一致,在寫入數(shù)據(jù)的時候,兩個NameNode內(nèi)存中都要記錄數(shù)據(jù)的元信息,并保持一致。這個JournalNode就是用來在兩個NameNode中同步數(shù)據(jù)的,并且standby NameNode實現(xiàn)了SecondNameNode的功能。

進(jìn)行數(shù)據(jù)同步操作的過程如下:

active NameNode有操作之后,它的editlog會被記錄到JournalNode中,standby NameNode會從JournalNode中讀取到變化并進(jìn)行同步,同時standby NameNode會監(jiān)聽記錄的變化。這樣做的話就是實時同步了,并且standby NameNode就實現(xiàn)了SecondNameNode的功能。

優(yōu)點:

缺點:


文章題目:nosql數(shù)據(jù)庫集群,NoSql數(shù)據(jù)庫
文章轉(zhuǎn)載:http://weahome.cn/article/hdscco.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部