真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

nosql基準(zhǔn)測試,NoSQL三大基石

大數(shù)據(jù)是什么專業(yè)?學(xué)的是些什么

大數(shù)據(jù)專業(yè)全稱“大數(shù)據(jù)采集與管理專業(yè)”。

創(chuàng)新互聯(lián)建站是一家專注于成都做網(wǎng)站、網(wǎng)站制作、成都外貿(mào)網(wǎng)站建設(shè)與策劃設(shè)計(jì),且末網(wǎng)站建設(shè)哪家好?創(chuàng)新互聯(lián)建站做網(wǎng)站,專注于網(wǎng)站建設(shè)十多年,網(wǎng)設(shè)計(jì)領(lǐng)域的專業(yè)建站公司;建站業(yè)務(wù)涵蓋:且末等地區(qū)。且末做網(wǎng)站價(jià)格咨詢:13518219792

大數(shù)據(jù)采集與管理專業(yè)是從大數(shù)據(jù)應(yīng)用的數(shù)據(jù)管理、系統(tǒng)開發(fā)、海量數(shù)據(jù)分析與挖掘等層面系統(tǒng)地幫助企業(yè)掌握大數(shù)據(jù)應(yīng)用中的各種典型問題的解決辦法的專業(yè)。

1、行業(yè)現(xiàn)狀:現(xiàn)在越來越多的行業(yè)對大數(shù)據(jù)應(yīng)用持樂觀的態(tài)度,大數(shù)據(jù)或者相關(guān)數(shù)據(jù)分析解決方案的使用在互聯(lián)網(wǎng)行業(yè),比如百度、騰訊、淘寶、新浪等公司已經(jīng)成為標(biāo)準(zhǔn)。而像電信、金融、能源這些傳統(tǒng)行業(yè),越來越多的用戶開始嘗試或者考慮怎么樣使用大數(shù)據(jù)解決方案,來提升自己的業(yè)務(wù)水平。

2、課程設(shè)置:大數(shù)據(jù)專業(yè)將從大數(shù)據(jù)應(yīng)用的三個(gè)主要層面(即數(shù)據(jù)管理、系統(tǒng)開發(fā)、海量數(shù)據(jù)分析與挖掘)系統(tǒng)地幫助企業(yè)掌握大數(shù)據(jù)應(yīng)用中的各種典型問題的解決辦法,包括實(shí)現(xiàn)和分析協(xié)同過濾算法、運(yùn)行和學(xué)習(xí)分類算法、分布式Hadoop集群的搭建和基準(zhǔn)測試、分布式Hbase集群的搭建和基準(zhǔn)測試、實(shí)現(xiàn)一個(gè)基于、Mapreduce的并行算法、部署Hive并實(shí)現(xiàn)一個(gè)的數(shù)據(jù)操作等等,實(shí)際提升企業(yè)解決實(shí)際問題的能力。

3、核心技術(shù):

(1)大數(shù)據(jù)與Hadoop生態(tài)系統(tǒng)。詳細(xì)介紹分析分布式文件系統(tǒng)HDFS、集群文件系統(tǒng)ClusterFS和NoSQL Database技術(shù)的原理與應(yīng)用;分布式計(jì)算框架Mapreduce、分布式數(shù)據(jù)庫HBase、分布式數(shù)據(jù)倉庫Hive。

(2)關(guān)系型數(shù)據(jù)庫技術(shù)。詳細(xì)介紹關(guān)系型數(shù)據(jù)庫的原理,掌握典型企業(yè)級(jí)數(shù)據(jù)庫的構(gòu)建、管理、開發(fā)及應(yīng)用。

(3)分布式數(shù)據(jù)處理。詳細(xì)介紹分析Map/Reduce計(jì)算模型和Hadoop Map/Reduce技術(shù)的原理與應(yīng)用。

(4)海量數(shù)據(jù)分析與數(shù)據(jù)挖掘。詳細(xì)介紹數(shù)據(jù)挖掘技術(shù)、數(shù)據(jù)挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF數(shù)據(jù)挖掘算法–聚類算法;以及數(shù)據(jù)挖掘技術(shù)在行業(yè)中的具體應(yīng)用。

(5)物聯(lián)網(wǎng)與大數(shù)據(jù)。詳細(xì)介紹物聯(lián)網(wǎng)中的大數(shù)據(jù)應(yīng)用、遙感圖像的自動(dòng)解譯、時(shí)間序列數(shù)據(jù)的查詢、分析和挖掘。

(6)文件系統(tǒng)(HDFS)。詳細(xì)介紹HDFS部署,基于HDFS的高性能提供高吞吐量的數(shù)據(jù)訪問。

(7)NoSQL。詳細(xì)介紹NoSQL非關(guān)系型數(shù)據(jù)庫系統(tǒng)的原理、架構(gòu)及典型應(yīng)用。

大數(shù)據(jù)專業(yè)課程設(shè)置有哪些?

1、大數(shù)據(jù)專業(yè),一般是指大數(shù)據(jù)采集與管理專業(yè);

2、課程設(shè)置,大數(shù)據(jù)專業(yè)將從大數(shù)據(jù)應(yīng)用的三個(gè)主要層面(即數(shù)據(jù)管理、系統(tǒng)開發(fā)、海量數(shù)據(jù)分析與挖掘)系統(tǒng)地幫助企業(yè)掌握大數(shù)據(jù)應(yīng)用中的各種典型問題的解決辦法,包括實(shí)現(xiàn)和分析協(xié)同過濾算法、運(yùn)行和學(xué)習(xí)分類算法、分布式Hadoop集群的搭建和基準(zhǔn)測試、分布式Hbase集群的搭建和基準(zhǔn)測試、實(shí)現(xiàn)一個(gè)基于、Mapreduce的并行算法、部署Hive并實(shí)現(xiàn)一個(gè)的數(shù)據(jù)操作等等,實(shí)際提升企業(yè)解決實(shí)際問題的能力。

3、核心技術(shù),

(1)大數(shù)據(jù)與Hadoop生態(tài)系統(tǒng)。詳細(xì)介紹分析分布式文件系統(tǒng)HDFS、集群文件系統(tǒng)ClusterFS和NoSQL Database技術(shù)的原理與應(yīng)用;分布式計(jì)算框架Mapreduce、分布式數(shù)據(jù)庫HBase、分布式數(shù)據(jù)倉庫Hive。

(2)關(guān)系型數(shù)據(jù)庫技術(shù)。詳細(xì)介紹關(guān)系型數(shù)據(jù)庫的原理,掌握典型企業(yè)級(jí)數(shù)據(jù)庫的構(gòu)建、管理、開發(fā)及應(yīng)用。

(3)分布式數(shù)據(jù)處理。詳細(xì)介紹分析Map/Reduce計(jì)算模型和Hadoop Map/Reduce技術(shù)的原理與應(yīng)用。

(4)海量數(shù)據(jù)分析與數(shù)據(jù)挖掘。詳細(xì)介紹數(shù)據(jù)挖掘技術(shù)、數(shù)據(jù)挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF數(shù)據(jù)挖掘算法–聚類算法;以及數(shù)據(jù)挖掘技術(shù)在行業(yè)中的具體應(yīng)用。

(5)物聯(lián)網(wǎng)與大數(shù)據(jù)。詳細(xì)介紹物聯(lián)網(wǎng)中的大數(shù)據(jù)應(yīng)用、遙感圖像的自動(dòng)解譯、時(shí)間序列數(shù)據(jù)的查詢、分析和挖掘。

(6)文件系統(tǒng)(HDFS)。詳細(xì)介紹HDFS部署,基于HDFS的高性能提供高吞吐量的數(shù)據(jù)訪問。

(7)NoSQL。詳細(xì)介紹NoSQL非關(guān)系型數(shù)據(jù)庫系統(tǒng)的原理、架構(gòu)及典型應(yīng)用。

4、行業(yè)現(xiàn)狀,

今天,越來越多的行業(yè)對大數(shù)據(jù)應(yīng)用持樂觀的態(tài)度,大數(shù)據(jù)或者相關(guān)數(shù)據(jù)分析解決方案的使用在互聯(lián)網(wǎng)行業(yè),比如百度、騰訊、淘寶、新浪等公司已經(jīng)成為標(biāo)準(zhǔn)。而像電信、金融、能源這些傳統(tǒng)行業(yè),越來越多的用戶開始嘗試或者考慮怎么樣使用大數(shù)據(jù)解決方案,來提升自己的業(yè)務(wù)水平。

在“大數(shù)據(jù)”背景之下,精通“大數(shù)據(jù)”的專業(yè)人才將成為企業(yè)最重要的業(yè)務(wù)角色,“大數(shù)據(jù)”從業(yè)人員薪酬持續(xù)增長,人才缺口巨大。

如何通過擴(kuò)展為mysql帶來2億qps

 MySQL Cluster提供多種方式對存儲(chǔ)數(shù)據(jù)進(jìn)行訪問; 最常見的方法當(dāng)然是SQL,不過正如下圖所示,我們還可以利用多種原生API幫助應(yīng)用程序直接從數(shù)據(jù)庫當(dāng)中讀取及寫入數(shù)據(jù),同時(shí)又能通過轉(zhuǎn)換為SQL以繞過MySQL Server的方式防止效率低下或者拉高開發(fā)復(fù)雜程度?,F(xiàn)有API面向C++、Java、JPA、JavaScript/Node.js、HTTP以及Memcached協(xié)議。

基準(zhǔn)目標(biāo):每秒2億次查詢

MySQL Cluster在設(shè)計(jì)當(dāng)中主要面向兩種工作負(fù)載類型:

-OLTP(即聯(lián)機(jī)事務(wù)處理):內(nèi)存優(yōu)化型表提供次毫秒級(jí)低延遲與堪稱極端水平的OLTP工作負(fù)載并發(fā)能力,同時(shí)仍然保證良好的耐久性表現(xiàn); 此外,其也能夠被用于處理基于磁盤的表數(shù)據(jù)。

-臨時(shí)性搜索:MySQL Cluster增加了并行數(shù)量上限,從而在對表內(nèi)非索引數(shù)據(jù)列進(jìn)行掃描時(shí)帶來顯著的速度提升。

值得一提的是,MySQL Cluster在處理OLTP工作負(fù)載方面的表現(xiàn)最為突出,特別是在以并發(fā)方式發(fā)出海量查詢/事務(wù)請求的情況下。為此,我們一般會(huì)使用flexAsynch基準(zhǔn)測試來衡量將更多數(shù)據(jù)節(jié)點(diǎn)添加到集群當(dāng)中后,NoSQL所獲得的實(shí)際性能擴(kuò)展效果。

大數(shù)據(jù)專業(yè)課程有哪些

首先我們要了解Java語言和Linux操作系統(tǒng),這兩個(gè)是學(xué)習(xí)大數(shù)據(jù)的基礎(chǔ),學(xué)習(xí)的順序不分前后。

Java :只要了解一些基礎(chǔ)即可,做大數(shù)據(jù)不需要很深的Java 技術(shù),學(xué)java SE 就相當(dāng)于有學(xué)習(xí)大數(shù)據(jù)。基礎(chǔ)

Linux:因?yàn)榇髷?shù)據(jù)相關(guān)軟件都是在Linux上運(yùn)行的,所以Linux要學(xué)習(xí)的扎實(shí)一些,學(xué)好Linux對你快速掌握大數(shù)據(jù)相關(guān)技術(shù)會(huì)有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數(shù)據(jù)軟件的運(yùn)行環(huán)境和網(wǎng)絡(luò)環(huán)境配置,能少踩很多坑,學(xué)會(huì)shell就能看懂腳本這樣能更容易理解和配置大數(shù)據(jù)集群。還能讓你對以后新出的大數(shù)據(jù)技術(shù)學(xué)習(xí)起來更快。

好說完基礎(chǔ)了,再說說還需要學(xué)習(xí)哪些大數(shù)據(jù)技術(shù),可以按我寫的順序?qū)W下去。

Hadoop:這是現(xiàn)在流行的大數(shù)據(jù)處理平臺(tái)幾乎已經(jīng)成為大數(shù)據(jù)的代名詞,所以這個(gè)是必學(xué)的。Hadoop里面包括幾個(gè)組件HDFS、MapReduce和YARN,HDFS是存儲(chǔ)數(shù)據(jù)的地方就像我們電腦的硬盤一樣文件都存儲(chǔ)在這個(gè)上面,MapReduce是對數(shù)據(jù)進(jìn)行處理計(jì)算的,它有個(gè)特點(diǎn)就是不管多大的數(shù)據(jù)只要給它時(shí)間它就能把數(shù)據(jù)跑完,但是時(shí)間可能不是很快所以它叫數(shù)據(jù)的批處理。

記住學(xué)到這里可以作為你學(xué)大數(shù)據(jù)的一個(gè)節(jié)點(diǎn)。

Zookeeper:這是個(gè)萬金油,安裝Hadoop的HA的時(shí)候就會(huì)用到它,以后的Hbase也會(huì)用到它。它一般用來存放一些相互協(xié)作的信息,這些信息比較小一般不會(huì)超過1M,都是使用它的軟件對它有依賴,對于我們個(gè)人來講只需要把它安裝正確,讓它正常的run起來就可以了。

Mysql:我們學(xué)習(xí)完大數(shù)據(jù)的處理了,接下來學(xué)習(xí)學(xué)習(xí)小數(shù)據(jù)的處理工具mysql數(shù)據(jù)庫,因?yàn)橐粫?huì)裝hive的時(shí)候要用到,mysql需要掌握到什么層度那?你能在Linux上把它安裝好,運(yùn)行起來,會(huì)配置簡單的權(quán)限,修改root的密碼,創(chuàng)建數(shù)據(jù)庫。這里主要的是學(xué)習(xí)SQL的語法,因?yàn)閔ive的語法和這個(gè)非常相似。

Sqoop:這個(gè)是用于把Mysql里的數(shù)據(jù)導(dǎo)入到Hadoop里的。當(dāng)然你也可以不用這個(gè),直接把Mysql數(shù)據(jù)表導(dǎo)出成文件再放到HDFS上也是一樣的,當(dāng)然生產(chǎn)環(huán)境中使用要注意Mysql的壓力。

Hive:這個(gè)東西對于會(huì)SQL語法的來說就是神器,它能讓你處理大數(shù)據(jù)變的很簡單,不會(huì)再費(fèi)勁的編寫MapReduce程序。有的人說Pig那?它和Pig差不多掌握一個(gè)就可以了。

Oozie:既然學(xué)會(huì)Hive了,我相信你一定需要這個(gè)東西,它可以幫你管理你的Hive或者M(jìn)apReduce、Spark腳本,還能檢查你的程序是否執(zhí)行正確,出錯(cuò)了給你發(fā)報(bào)警并能幫你重試程序,最重要的是還能幫你配置任務(wù)的依賴關(guān)系。我相信你一定會(huì)喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態(tài)體系中的NOSQL數(shù)據(jù)庫,他的數(shù)據(jù)是按照key和value的形式存儲(chǔ)的并且key是唯一的,所以它能用來做數(shù)據(jù)的排重,它與MYSQL相比能存儲(chǔ)的數(shù)據(jù)量大很多。所以他常被用于大數(shù)據(jù)處理完成之后的存儲(chǔ)目的地。

Kafka:這是個(gè)比較好用的隊(duì)列工具,隊(duì)列是干嗎的?排隊(duì)買票你知道不?數(shù)據(jù)多了同樣也需要排隊(duì)處理,這樣與你協(xié)作的其它同學(xué)不會(huì)叫起來,你干嗎給我這么多的數(shù)據(jù)(比如好幾百G的文件)我怎么處理得過來,你別怪他因?yàn)樗皇歉愦髷?shù)據(jù)的,你可以跟他講我把數(shù)據(jù)放在隊(duì)列里你使用的時(shí)候一個(gè)個(gè)拿,這樣他就不在抱怨了馬上灰流流的去優(yōu)化他的程序去了,因?yàn)樘幚聿贿^來就是他的事情。而不是你給的問題。當(dāng)然我們也可以利用這個(gè)工具來做線上實(shí)時(shí)數(shù)據(jù)的入庫或入HDFS,這時(shí)你可以與一個(gè)叫Flume的工具配合使用,它是專門用來提供對數(shù)據(jù)進(jìn)行簡單處理,并寫到各種數(shù)據(jù)接受方(比如Kafka)的。

Spark:它是用來彌補(bǔ)基于MapReduce處理數(shù)據(jù)速度上的缺點(diǎn),它的特點(diǎn)是把數(shù)據(jù)裝載到內(nèi)存中計(jì)算而不是去讀慢的要死進(jìn)化還特別慢的硬盤。特別適合做迭代運(yùn)算,所以算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因?yàn)樗鼈兌际怯肑VM的。

大數(shù)據(jù)專業(yè),是什么樣的專業(yè)?

大數(shù)據(jù)是計(jì)算機(jī)類的專業(yè)。大數(shù)據(jù)學(xué)習(xí)的課程主要有數(shù)學(xué)分析、高等代數(shù)、普通物理數(shù)學(xué)與信息科學(xué)概論、數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)科學(xué)導(dǎo)論、程序設(shè)計(jì)導(dǎo)論、程序設(shè)計(jì)實(shí)踐、離散數(shù)學(xué)、概率與統(tǒng)計(jì)、算法分析與設(shè)計(jì)、數(shù)據(jù)計(jì)算智能、數(shù)據(jù)庫系統(tǒng)概論、計(jì)算機(jī)系統(tǒng)基礎(chǔ)、并行體系結(jié)構(gòu)與編程、非結(jié)構(gòu)化大數(shù)據(jù)分析、數(shù)據(jù)科學(xué)算法導(dǎo)論、數(shù)據(jù)科學(xué)專題、數(shù)據(jù)科學(xué)實(shí)踐、互聯(lián)網(wǎng)實(shí)用開發(fā)技術(shù)、抽樣技術(shù)、統(tǒng)計(jì)學(xué)習(xí)、回歸分析、隨機(jī)過程。

大數(shù)據(jù)專業(yè)是個(gè)什么專業(yè)啊,干什么的?

大數(shù)據(jù)屬于大數(shù)據(jù)采集與管理專業(yè),在大學(xué)中可以選擇這個(gè)專業(yè)。. 大數(shù)據(jù)采集與管理專業(yè)是從大數(shù)據(jù)應(yīng)用的數(shù)據(jù)管理、系統(tǒng)開發(fā)、海量數(shù)據(jù)分析與挖掘等層面系統(tǒng)地幫助企業(yè)掌握大數(shù)據(jù)應(yīng)用中的各種典型問題的解決辦法的專業(yè)。. 但是在大學(xué)中學(xué)習(xí)本專業(yè)會(huì)有一個(gè)問題那就是實(shí)戰(zhàn)經(jīng)驗(yàn)不足,企業(yè)對于大數(shù)據(jù)專業(yè)的人才需求點(diǎn)很大程度上在于實(shí)戰(zhàn)經(jīng)驗(yàn),如果要學(xué)習(xí)本專業(yè)那大學(xué)期間一定要多參加項(xiàng)目, 重視實(shí)習(xí)。. 大數(shù)據(jù)專業(yè)在目前屬于前景比較好的專業(yè),但是還是那個(gè)問題,如果學(xué)習(xí)期間沒有得到實(shí)戰(zhàn)鍛煉,那將來就業(yè)時(shí)肯定收到很大影響。. 如果真的對大數(shù)據(jù)專業(yè)感興趣的話,可以考慮關(guān)聯(lián)度較大專業(yè)比如計(jì)算機(jī)、統(tǒng)計(jì)學(xué)等,因?yàn)樵诖髷?shù)據(jù)學(xué)習(xí)過程中也需要一定的計(jì)算機(jī)基礎(chǔ),比較推薦計(jì)算機(jī)專業(yè)。


網(wǎng)頁標(biāo)題:nosql基準(zhǔn)測試,NoSQL三大基石
文章起源:http://weahome.cn/article/hdsjpo.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部