這篇文章給大家分享的是有關(guān)Pytorch如何提取模型特征向量保存至csv的內(nèi)容。小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過(guò)來(lái)看看吧。
創(chuàng)新互聯(lián)公司自2013年起,是專(zhuān)業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項(xiàng)目網(wǎng)站制作、網(wǎng)站建設(shè)網(wǎng)站策劃,項(xiàng)目實(shí)施與項(xiàng)目整合能力。我們以讓每一個(gè)夢(mèng)想脫穎而出為使命,1280元方山做網(wǎng)站,已為上家服務(wù),為方山各地企業(yè)和個(gè)人服務(wù),聯(lián)系電話:028-86922220Pytorch提取模型特征向量
# -*- coding: utf-8 -*- """ dj """ import torch import torch.nn as nn import os from torchvision import models, transforms from torch.autograd import Variable import numpy as np from PIL import Image import torchvision.models as models import pretrainedmodels import pandas as pd class FCViewer(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True): super(M,self).__init__() if pretrained: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') else: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None) self.img_encoder = list(img_model.children())[:-2] self.img_encoder.append(nn.AdaptiveAvgPool2d(1)) self.img_encoder = nn.Sequential(*self.img_encoder) if drop > 0: self.img_fc = nn.Sequential(FCViewer()) else: self.img_fc = nn.Sequential( FCViewer()) def forward(self, x_img): x_img = self.img_encoder(x_img) x_img = self.img_fc(x_img) return x_img model1=M('resnet18',0,pretrained=True) features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]) file_path='/home/cc/Desktop/picture' names = os.listdir(file_path) print(names) for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
jiazaixunlianhaodemoxing
import torch import torch.nn.functional as F import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import argparse class ResidualBlock(nn.Module): def __init__(self, inchannel, outchannel, stride=1): super(ResidualBlock, self).__init__() self.left = nn.Sequential( nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(outchannel), nn.ReLU(inplace=True), nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(outchannel) ) self.shortcut = nn.Sequential() if stride != 1 or inchannel != outchannel: self.shortcut = nn.Sequential( nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(outchannel) ) def forward(self, x): out = self.left(x) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, ResidualBlock, num_classes=10): super(ResNet, self).__init__() self.inchannel = 64 self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), ) self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1) self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2) self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2) self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2) self.fc = nn.Linear(512, num_classes) def make_layer(self, block, channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1] layers = [] for stride in strides: layers.append(block(self.inchannel, channels, stride)) self.inchannel = channels return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.fc(out) return out def ResNet18(): return ResNet(ResidualBlock) import os from torchvision import models, transforms from torch.autograd import Variable import numpy as np from PIL import Image import torchvision.models as models import pretrainedmodels import pandas as pd class FCViewer(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True): super(M,self).__init__() if pretrained: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') else: img_model = ResNet18() we='/home/cc/Desktop/dj/model1/incption--7' # 模型定義-ResNet #net = ResNet18().to(device) img_model.load_state_dict(torch.load(we))#diaoyong self.img_encoder = list(img_model.children())[:-2] self.img_encoder.append(nn.AdaptiveAvgPool2d(1)) self.img_encoder = nn.Sequential(*self.img_encoder) if drop > 0: self.img_fc = nn.Sequential(FCViewer()) else: self.img_fc = nn.Sequential( FCViewer()) def forward(self, x_img): x_img = self.img_encoder(x_img) x_img = self.img_fc(x_img) return x_img model1=M('resnet18',0,pretrained=None) features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([ transforms.Resize(56), transforms.CenterCrop(32), transforms.ToTensor()]) file_path='/home/cc/Desktop/picture' names = os.listdir(file_path) print(names) for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
感謝各位的閱讀!關(guān)于“Pytorch如何提取模型特征向量保存至csv”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!