import scipy.stats as sta
成都創(chuàng)新互聯(lián)服務(wù)項(xiàng)目包括李滄網(wǎng)站建設(shè)、李滄網(wǎng)站制作、李滄網(wǎng)頁(yè)制作以及李滄網(wǎng)絡(luò)營(yíng)銷策劃等。多年來(lái),我們專注于互聯(lián)網(wǎng)行業(yè),利用自身積累的技術(shù)優(yōu)勢(shì)、行業(yè)經(jīng)驗(yàn)、深度合作伙伴關(guān)系等,向廣大中小型企業(yè)、政府機(jī)構(gòu)等提供互聯(lián)網(wǎng)行業(yè)的解決方案,李滄網(wǎng)站推廣取得了明顯的社會(huì)效益與經(jīng)濟(jì)效益。目前,我們服務(wù)的客戶以成都為中心已經(jīng)輻射到李滄省份的部分城市,未來(lái)相信會(huì)繼續(xù)擴(kuò)大服務(wù)區(qū)域并繼續(xù)獲得客戶的支持與信任!
import math
def option_call(s,x,r,sigma,t):
d1=(math.log(s/x)+(r+sigma**2/2)*t)/(math.sqrt(t)*sigma)
d2=d1-sigma*math.sqrt(t)
c=s*sta.norm.cdf(d1,0,1)-x*sta.norm.cdf(d2,0,1)*math.exp(-r*t)
return c
有些Python小白對(duì)numpy中的常見(jiàn)函數(shù)不太了解,今天小編就整理出來(lái)分享給大家。
Numpy是Python的一個(gè)科學(xué)計(jì)算的庫(kù),提供了矩陣運(yùn)算的功能,其一般與Scipy、matplotlib一起使用。其實(shí),list已經(jīng)提供了類似于矩陣的表示形式,不過(guò)numpy為我們提供了更多的函數(shù)。
數(shù)組常用函數(shù)
1.where()按條件返回?cái)?shù)組的索引值
2.take(a,index)從數(shù)組a中按照索引index取值
3.linspace(a,b,N)返回一個(gè)在(a,b)范圍內(nèi)均勻分布的數(shù)組,元素個(gè)數(shù)為N個(gè)
4.a.fill()將數(shù)組的所有元素以指定的值填充
5.diff(a)返回?cái)?shù)組a相鄰元素的差值構(gòu)成的數(shù)組
6.sign(a)返回?cái)?shù)組a的每個(gè)元素的正負(fù)符號(hào)
7.piecewise(a,[condlist],[funclist])數(shù)組a根據(jù)布爾型條件condlist返回對(duì)應(yīng)元素結(jié)果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改變數(shù)組維度
a.ravel(),a.flatten():將數(shù)組a展平成一維數(shù)組
a.shape=(m,n),a.reshape(m,n):將數(shù)組a轉(zhuǎn)換成m*n維數(shù)組
a.transpose,a.T轉(zhuǎn)置數(shù)組a
數(shù)組組合
1.hstack((a,b)),concatenate((a,b),axis=1)將數(shù)組a,b沿水平方向組合
2.vstack((a,b)),concatenate((a,b),axis=0)將數(shù)組a,b沿豎直方向組合
3.row_stack((a,b))將數(shù)組a,b按行方向組合
4.column_stack((a,b))將數(shù)組a,b按列方向組合
數(shù)組分割
1.split(a,n,axis=0),vsplit(a,n)將數(shù)組a沿垂直方向分割成n個(gè)數(shù)組
2.split(a,n,axis=1),hsplit(a,n)將數(shù)組a沿水平方向分割成n個(gè)數(shù)組
數(shù)組修剪和壓縮
1.a.clip(m,n)設(shè)置數(shù)組a的范圍為(m,n),數(shù)組中大于n的元素設(shè)定為n,小于m的元素設(shè)定為m
2.a.compress()返回根據(jù)給定條件篩選后的數(shù)組
數(shù)組屬性
1.a.dtype數(shù)組a的數(shù)據(jù)類型
2.a.shape數(shù)組a的維度
3.a.ndim數(shù)組a的維數(shù)
4.a.size數(shù)組a所含元素的總個(gè)數(shù)
5.a.itemsize數(shù)組a的元素在內(nèi)存中所占的字節(jié)數(shù)
6.a.nbytes整個(gè)數(shù)組a所占的內(nèi)存空間7.a.astype(int)轉(zhuǎn)換a數(shù)組的類型為int型
數(shù)組計(jì)算
1.average(a,weights=v)對(duì)數(shù)組a以權(quán)重v進(jìn)行加權(quán)平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)數(shù)組a的均值、最大值、最小值、中位數(shù)、方差、標(biāo)準(zhǔn)差
3.a.prod()數(shù)組a的所有元素的乘積
4.a.cumprod()數(shù)組a的元素的累積乘積
5.cov(a,b),corrcoef(a,b)數(shù)組a和b的協(xié)方差、相關(guān)系數(shù)
6.a.diagonal()查看矩陣a對(duì)角線上的元素7.a.trace()計(jì)算矩陣a的跡,即對(duì)角線元素之和
以上就是numpy中的常見(jiàn)函數(shù)。更多Python學(xué)習(xí)推薦:PyThon學(xué)習(xí)網(wǎng)教學(xué)中心。
Shape Parameters
形態(tài)參數(shù)
While a general continuous random variable can be shifted and scaled
with the loc and scale parameters, some distributions require additional
shape parameters. For instance, the gamma distribution, with density
γ(x,a)=λ(λx)a?1Γ(a)e?λx,
requires the shape parameter a. Observe that setting λ can be obtained by setting the scale keyword to 1/λ.
雖然一個(gè)一般的連續(xù)隨機(jī)變量可以被位移和伸縮通過(guò)loc和scale參數(shù),但一些分布還需要額外的形態(tài)參數(shù)。作為例子,看到這個(gè)伽馬分布,這是它的密度函數(shù)
γ(x,a)=λ(λx)a?1Γ(a)e?λx,
要求一個(gè)形態(tài)參數(shù)a。注意到λ的設(shè)置可以通過(guò)設(shè)置scale關(guān)鍵字為1/λ進(jìn)行。
Let’s check the number and name of the shape parameters of the gamma
distribution. (We know from the above that this should be 1.)
讓我們檢查伽馬分布的形態(tài)參數(shù)的名字的數(shù)量。(我們知道從上面知道其應(yīng)該為1)
from scipy.stats import gamma
gamma.numargs
1
gamma.shapes
'a'
Now we set the value of the shape variable to 1 to obtain the
exponential distribution, so that we compare easily whether we get the
results we expect.
現(xiàn)在我們?cè)O(shè)置形態(tài)變量的值為1以變成指數(shù)分布。所以我們可以容易的比較是否得到了我們所期望的結(jié)果。
gamma(1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Notice that we can also specify shape parameters as keywords:
注意我們也可以以關(guān)鍵字的方式指定形態(tài)參數(shù):
gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Freezing a Distribution
凍結(jié)分布
Passing the loc and scale keywords time and again can become quite
bothersome. The concept of freezing a RV is used to solve such problems.
不斷地傳遞loc與scale關(guān)鍵字最終會(huì)讓人厭煩。而凍結(jié)RV的概念被用來(lái)解決這個(gè)問(wèn)題。
rv = gamma(1, scale=2.)
By using rv we no longer have to include the scale or the shape
parameters anymore. Thus, distributions can be used in one of two ways,
either by passing all distribution parameters to each method call (such
as we did earlier) or by freezing the parameters for the instance of the
distribution. Let us check this:
通過(guò)使用rv我們不用再更多的包含scale與形態(tài)參數(shù)在任何情況下。顯然,分布可以被多種方式使用,我們可以通過(guò)傳遞所有分布參數(shù)給對(duì)方法的每次調(diào)用(像我們之前做的那樣)或者可以對(duì)一個(gè)分布對(duì)象凍結(jié)參數(shù)。讓我們看看是怎么回事:
rv.mean(), rv.std()
(2.0, 2.0)
This is indeed what we should get.
這正是我們應(yīng)該得到的。
Broadcasting
廣播
The basic methods pdf and so on satisfy the usual numpy broadcasting
rules. For example, we can calculate the critical values for the upper
tail of the t distribution for different probabilites and degrees of
freedom.
像pdf這樣的簡(jiǎn)單方法滿足numpy的廣播規(guī)則。作為例子,我們可以計(jì)算t分布的右尾分布的臨界值對(duì)于不同的概率值以及自由度。
stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[ 1.37218364, 1.81246112, 2.76376946],
[ 1.36343032, 1.79588482, 2.71807918]])
Here, the first row are the critical values for 10 degrees of freedom
and the second row for 11 degrees of freedom (d.o.f.). Thus, the
broadcasting rules give the same result of calling isf twice:
這里,第一行是以10自由度的臨界值,而第二行是以11為自由度的臨界值。所以,廣播規(guī)則與下面調(diào)用了兩次isf產(chǎn)生的結(jié)果相同。
stats.t.isf([0.1, 0.05, 0.01], 10)
array([ 1.37218364, 1.81246112, 2.76376946])
stats.t.isf([0.1, 0.05, 0.01], 11)
array([ 1.36343032, 1.79588482, 2.71807918])
If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of
degrees of freedom i.e., [10, 11, 12], have the same array shape, then
element wise matching is used. As an example, we can obtain the 10% tail
for 10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f.
by calling
但是如果概率數(shù)組,如[0.1,0.05,0.01]與自由度數(shù)組,如[10,11,12]具有相同的數(shù)組形態(tài),則元素對(duì)應(yīng)捕捉被作用,我們可以分別得到10%,5%,1%尾的臨界值對(duì)于10,11,12的自由度。
stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([ 1.37218364, 1.79588482, 2.68099799])
Specific Points for Discrete Distributions
離散分布的特殊之處
Discrete distribution have mostly the same basic methods as the
continuous distributions. However pdf is replaced the probability mass
function pmf, no estimation methods, such as fit, are available, and
scale is not a valid keyword parameter. The location parameter, keyword
loc can still be used to shift the distribution.
離散分布的簡(jiǎn)單方法大多數(shù)與連續(xù)分布很類似。當(dāng)然像pdf被更換為密度函數(shù)pmf,沒(méi)有估計(jì)方法,像fit是可用的。而scale不是一個(gè)合法的關(guān)鍵字參數(shù)。Location參數(shù),關(guān)鍵字loc則仍然可以使用用于位移。
The computation of the cdf requires some extra attention. In the case of
continuous distribution the cumulative distribution function is in most
standard cases strictly monotonic increasing in the bounds (a,b) and
has therefore a unique inverse. The cdf of a discrete distribution,
however, is a step function, hence the inverse cdf, i.e., the percent
point function, requires a different definition:
ppf(q) = min{x : cdf(x) = q, x integer}
Cdf的計(jì)算要求一些額外的關(guān)注。在連續(xù)分布的情況下,累積分布函數(shù)在大多數(shù)標(biāo)準(zhǔn)情況下是嚴(yán)格遞增的,所以有唯一的逆。而cdf在離散分布,無(wú)論如何,是階躍函數(shù),所以cdf的逆,分位點(diǎn)函數(shù),要求一個(gè)不同的定義:
ppf(q) = min{x : cdf(x) = q, x integer}
For further info, see the docs here.
為了更多信息可以看這里。
We can look at the hypergeometric distribution as an example
from scipy.stats import hypergeom
[M, n, N] = [20, 7, 12]
我們可以看這個(gè)超幾何分布的例子
from scipy.stats import hypergeom
[M, n, N] = [20, 7, 12]
If we use the cdf at some integer points and then evaluate the ppf at
those cdf values, we get the initial integers back, for example
如果我們使用在一些整數(shù)點(diǎn)使用cdf,它們的cdf值再作用ppf會(huì)回到開(kāi)始的值。
x = np.arange(4)*2
x
array([0, 2, 4, 6])
prb = hypergeom.cdf(x, M, n, N)
prb
array([ 0.0001031991744066, 0.0521155830753351, 0.6083591331269301,
0.9897832817337386])
hypergeom.ppf(prb, M, n, N)
array([ 0., 2., 4., 6.])
If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:
如果我們使用的值不是cdf的函數(shù)值,則我們得到一個(gè)更高的值。
hypergeom.ppf(prb + 1e-8, M, n, N)
array([ 1., 3., 5., 7.])
hypergeom.ppf(prb - 1e-8, M, n, N)
array([ 0., 2., 4., 6.])
如果隨機(jī)變量X的所有取值都可以逐個(gè)列舉出來(lái),則稱X為離散型隨機(jī)變量。相應(yīng)的概率分布有二項(xiàng)分布,泊松分布。
如果隨機(jī)變量X的所有取值無(wú)法逐個(gè)列舉出來(lái),而是取數(shù)軸上某一區(qū)間內(nèi)的任一點(diǎn),則稱X為連續(xù)型隨機(jī)變量。相應(yīng)的概率分布有正態(tài)分布,均勻分布,指數(shù)分布,伽馬分布,偏態(tài)分布,卡方分布,beta分布等。(真多分布,好恐怖~~)
在離散型隨機(jī)變量X的一切可能值中,各可能值與其對(duì)應(yīng)概率的乘積之和稱為該隨機(jī)變量X的期望值,記作E(X) 。比如有隨機(jī)變量,取值依次為:2,2,2,4,5。求其平均值:(2+2+2+4+5)/5 = 3。
期望值也就是該隨機(jī)變量總體的均值。 推導(dǎo)過(guò)程如下:
= (2+2+2+4+5)/5
= 1/5 2 3 + 4/5 + 5/5
= 3/5 2 + 1/5 4 + 1/5 5
= 0.6 2 + 0.2 4 + 0.2 5
= 60% 2 + 20% 4 + 20%*5
= 1.2 + 0.8 + 1
= 3
倒數(shù)第三步可以解釋為值為2的數(shù)字出現(xiàn)的概率為60%,4的概率為20%,5的概率為20%。 所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3。
0-1分布(兩點(diǎn)分布),它的隨機(jī)變量的取值為1或0。即離散型隨機(jī)變量X的概率分布為:P{X=0} = 1-p, P{X=1} = p,即:
則稱隨機(jī)變量X服從參數(shù)為p的0-1分布,記作X~B(1,p)。
在生活中有很多例子服從兩點(diǎn)分布,比如投資是否中標(biāo),新生嬰兒是男孩還是女孩,檢查產(chǎn)品是否合格等等。
大家非常熟悉的拋硬幣試驗(yàn)對(duì)應(yīng)的分布就是二項(xiàng)分布。拋硬幣試驗(yàn)要么出現(xiàn)正面,要么就是反面,只包含這兩個(gè)結(jié)果。出現(xiàn)正面的次數(shù)是一個(gè)隨機(jī)變量,這種隨機(jī)變量所服從的概率分布通常稱為 二項(xiàng)分布 。
像拋硬幣這類試驗(yàn)所具有的共同性質(zhì)總結(jié)如下:(以拋硬幣為例)
通常稱具有上述特征的n次重復(fù)獨(dú)立試驗(yàn)為n重伯努利試驗(yàn)。簡(jiǎn)稱伯努利試驗(yàn)或伯努利試驗(yàn)概型。特別地,當(dāng)試驗(yàn)次數(shù)為1時(shí),二項(xiàng)分布服從0-1分布(兩點(diǎn)分布)。
舉個(gè)栗子:拋3次均勻的硬幣,求結(jié)果出現(xiàn)有2個(gè)正面的概率 。
已知p = 0.5 (出現(xiàn)正面的概率) ,n = 3 ,k = 2
所以拋3次均勻的硬幣,求結(jié)果出現(xiàn)有2個(gè)正面的概率為3/8。
二項(xiàng)分布的期望值和方差 分別為:
泊松分布是用來(lái)描述在一 指定時(shí)間范圍內(nèi)或在指定的面積或體積之內(nèi)某一事件出現(xiàn)的次數(shù)的分布 。生活中服從泊松分布的例子比如有每天房產(chǎn)中介接待的客戶數(shù),某微博每月出現(xiàn)服務(wù)器癱瘓的次數(shù)等等。 泊松分布的公式為 :
其中 λ 為給定的時(shí)間間隔內(nèi)事件的平均數(shù),λ = np。e為一個(gè)數(shù)學(xué)常數(shù),一個(gè)無(wú)限不循環(huán)小數(shù),其值約為2.71828。
泊松分布的期望值和方差 分別為:
使用Python繪制泊松分布的概率分布圖:
因?yàn)檫B續(xù)型隨機(jī)變量可以取某一區(qū)間或整個(gè)實(shí)數(shù)軸上的任意一個(gè)值,所以通常用一個(gè)函數(shù)f(x)來(lái)表示連續(xù)型隨機(jī)變量,而f(x)就稱為 概率密度函數(shù) 。
概率密度函數(shù)f(x)具有如下性質(zhì) :
需要注意的是,f(x)不是一個(gè)概率,即f(x) ≠ P(X = x) 。在連續(xù)分布的情況下,隨機(jī)變量X在a與b之間的概率可以寫(xiě)成:
正態(tài)分布(或高斯分布)是連續(xù)型隨機(jī)變量的最重要也是最常見(jiàn)的分布,比如學(xué)生的考試成績(jī)就呈現(xiàn)出正態(tài)分布的特征,大部分成績(jī)集中在某個(gè)范圍(比如60-80分),很小一部分往兩端傾斜(比如50分以下和90多分以上)。還有人的身高等等。
正態(tài)分布的定義 :
如果隨機(jī)變量X的概率密度為( -∞x+∞):
則稱X服從正態(tài)分布,記作X~N(μ,σ2)。其中-∞μ+∞,σ0, μ為隨機(jī)變量X的均值,σ為隨機(jī)變量X的標(biāo)準(zhǔn)差。 正態(tài)分布的分布函數(shù)
正態(tài)分布的圖形特點(diǎn) :
使用Python繪制正態(tài)分布的概率分布圖:
正態(tài)分布有一個(gè)3σ準(zhǔn)則,即數(shù)值分布在(μ-σ,μ+σ)中的概率為0.6827,分布在(μ-2σ,μ+2σ)中的概率為0.9545,分布在(μ-3σ,μ+3σ)中的概率為0.9973,也就是說(shuō)大部分?jǐn)?shù)值是分布在(μ-3σ,μ+3σ)區(qū)間內(nèi),超出這個(gè)范圍的可能性很小很小,僅占不到0.3%,屬于極個(gè)別的小概率事件,所以3σ準(zhǔn)則可以用來(lái)檢測(cè)異常值。
當(dāng)μ=0,σ=1時(shí),有
此時(shí)的正態(tài)分布N(0,1) 稱為標(biāo)準(zhǔn)正態(tài)分布。因?yàn)棣?,σ都是確定的取值,所以其對(duì)應(yīng)的概率密度曲線是一條 形態(tài)固定 的曲線。
對(duì)標(biāo)準(zhǔn)正態(tài)分布,通常用φ(x)表示概率密度函數(shù),用Φ(x)表示分布函數(shù):
假設(shè)有一次物理考試特別難,滿分100分,全班只有大概20個(gè)人及格。與此同時(shí)語(yǔ)文考試很簡(jiǎn)單,全班絕大部分都考了90分以上。小明的物理和語(yǔ)文分別考了60分和80分,他回家后告訴家長(zhǎng),這時(shí)家長(zhǎng)能僅僅從兩科科目的分值直接判斷出這次小明的語(yǔ)文成績(jī)要比物理好很多嗎?如果不能,應(yīng)該如何判斷呢?此時(shí)Z-score就派上用場(chǎng)了。 Z-Score的計(jì)算定義 :
即 將隨機(jī)變量X先減去總體樣本均值,再除以總體樣本標(biāo)準(zhǔn)差就得到標(biāo)準(zhǔn)分?jǐn)?shù)啦。如果X低于平均值,則Z為負(fù)數(shù),反之為正數(shù) 。通過(guò)計(jì)算標(biāo)準(zhǔn)分?jǐn)?shù),可以將任何一個(gè)一般的正態(tài)分布轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布。
小明家長(zhǎng)從老師那得知物理的全班平均成績(jī)?yōu)?0分,標(biāo)準(zhǔn)差為10,而語(yǔ)文的平均成績(jī)?yōu)?2分,標(biāo)準(zhǔn)差為4。分別計(jì)算兩科成績(jī)的標(biāo)準(zhǔn)分?jǐn)?shù):
物理:標(biāo)準(zhǔn)分?jǐn)?shù) = (60-40)/10 = 2
語(yǔ)文:標(biāo)準(zhǔn)分?jǐn)?shù) = (85-95)/4 = -2.5
從計(jì)算結(jié)果來(lái)看,說(shuō)明這次考試小明的物理成績(jī)?cè)谌客瑢W(xué)中算是考得很不錯(cuò)的,而語(yǔ)文考得很差。
指數(shù)分布可能容易和前面的泊松分布混淆,泊松分布強(qiáng)調(diào)的是某段時(shí)間內(nèi)隨機(jī)事件發(fā)生的次數(shù)的概率分布,而指數(shù)分布說(shuō)的是 隨機(jī)事件發(fā)生的時(shí)間間隔 的概率分布。比如一班地鐵進(jìn)站的間隔時(shí)間。如果隨機(jī)變量X的概率密度為:
則稱X服從指數(shù)分布,其中的參數(shù)λ0。 對(duì)應(yīng)的分布函數(shù) 為:
均勻分布的期望值和方差 分別為:
使用Python繪制指數(shù)分布的概率分布圖:
均勻分布有兩種,分為 離散型均勻分布和連續(xù)型均勻分布 。其中離散型均勻分布最常見(jiàn)的例子就是拋擲骰子啦。拋擲骰子出現(xiàn)的點(diǎn)數(shù)就是一個(gè)離散型隨機(jī)變量,點(diǎn)數(shù)可能有1,2,3,4,5,6。每個(gè)數(shù)出現(xiàn)的概率都是1/6。
設(shè)連續(xù)型隨機(jī)變量X具有概率密度函數(shù):
則稱X服從區(qū)間(a,b)上的均勻分布。X在等長(zhǎng)度的子區(qū)間內(nèi)取值的概率相同。對(duì)應(yīng)的分布函數(shù)為:
f(x)和F(x)的圖形分別如下圖所示:
均勻分布的期望值和方差 分別為:
Tuple 是不可變 list。 一旦創(chuàng)建了一個(gè) tuple 就不能以任何方式改變它。x = T[0] ,y =T[1]是取不到數(shù)據(jù) T = Generic.GetScreenSize(msName)(x,y)=T #這樣才能取到數(shù)據(jù)