面試官心理分析
成都創(chuàng)新互聯(lián)自2013年起,是專業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項目成都網(wǎng)站設(shè)計、成都網(wǎng)站建設(shè)、外貿(mào)網(wǎng)站建設(shè)網(wǎng)站策劃,項目實施與項目整合能力。我們以讓每一個夢想脫穎而出為使命,1280元河西做網(wǎng)站,已為上家服務(wù),為河西各地企業(yè)和個人服務(wù),聯(lián)系電話:18980820575你只要用緩存,就可能會涉及到緩存與數(shù)據(jù)庫雙存儲雙寫,你只要是雙寫,就一定會有數(shù)據(jù)一致性的問題,那么你如何解決一致性問題?
一般來說,如果允許緩存可以稍微的跟數(shù)據(jù)庫偶爾有不一致的情況,也就是說如果你的系統(tǒng)不是嚴(yán)格要求 “緩存+數(shù)據(jù)庫” 必須保持一致性的話,最好不要做這個方案,即:讀請求和寫請求串行化,串到一個內(nèi)存隊列里去。
串行化可以保證一定不會出現(xiàn)不一致的情況,但是它也會導(dǎo)致系統(tǒng)的吞吐量大幅度降低,用比正常情況下多幾倍的機(jī)器去支撐線上的一個請求。
Cache Aside Pattern
最經(jīng)典的緩存+數(shù)據(jù)庫讀寫的模式,就是 Cache Aside Pattern。
讀的時候,先讀緩存,緩存沒有的話,就讀數(shù)據(jù)庫,然后取出數(shù)據(jù)后放入緩存,同時返回響應(yīng)。
更新的時候,先更新數(shù)據(jù)庫,然后再刪除緩存。
為什么是刪除緩存,而不是更新緩存?
原因很簡單,很多時候,在復(fù)雜點的緩存場景,緩存不單單是數(shù)據(jù)庫中直接取出來的值。
比如可能更新了某個表的一個字段,然后其對應(yīng)的緩存,是需要查詢另外兩個表的數(shù)據(jù)并進(jìn)行運算,才能計算出緩存最新的值的。
另外更新緩存的代價有時候是很高的。是不是說,每次修改數(shù)據(jù)庫的時候,都一定要將其對應(yīng)的緩存更新一份?也許有的場景是這樣,但是對于比較復(fù)雜的緩存數(shù)據(jù)計算的場景,就不是這樣了。如果你頻繁修改一個緩存涉及的多個表,緩存也頻繁更新。但是問題在于,這個緩存到底會不會被頻繁訪問到?
舉個栗子,一個緩存涉及的表的字段,在 1 分鐘內(nèi)就修改了 20 次,或者是 100 次,那么緩存更新 20 次、100 次;但是這個緩存在 1 分鐘內(nèi)只被讀取了 1 次,有大量的冷數(shù)據(jù)。實際上,如果你只是刪除緩存的話,那么在 1 分鐘內(nèi),這個緩存不過就重新計算一次而已,開銷大幅度降低。用到緩存才去算緩存。
其實刪除緩存,而不是更新緩存,就是一個 lazy 計算的思想,不要每次都重新做復(fù)雜的計算,不管它會不會用到,而是讓它到需要被使用的時候再重新計算。像 mybatis,hibernate,都有懶加載思想。查詢一個部門,部門帶了一個員工的 list,沒有必要說每次查詢部門,都里面的 1000 個員工的數(shù)據(jù)也同時查出來啊。80% 的情況,查這個部門,就只是要訪問這個部門的信息就可以了。先查部門,同時要訪問里面的員工,那么這個時候只有在你要訪問里面的員工的時候,才會去數(shù)據(jù)庫里面查詢 1000 個員工。
最初級的緩存不一致問題及解決方案
問題:先修改數(shù)據(jù)庫,再刪除緩存。如果刪除緩存失敗了,那么會導(dǎo)致數(shù)據(jù)庫中是新數(shù)據(jù),緩存中是舊數(shù)據(jù),數(shù)據(jù)就出現(xiàn)了不一致。
解決思路:先刪除緩存,再修改數(shù)據(jù)庫。如果數(shù)據(jù)庫修改失敗了,那么數(shù)據(jù)庫中是舊數(shù)據(jù),緩存中是空的,那么數(shù)據(jù)不會不一致。因為讀的時候緩存沒有,則讀數(shù)據(jù)庫中舊數(shù)據(jù),然后更新到緩存中。
比較復(fù)雜的數(shù)據(jù)不一致問題分析
數(shù)據(jù)發(fā)生了變更,先刪除了緩存,然后要去修改數(shù)據(jù)庫,此時還沒修改。一個請求過來,去讀緩存,發(fā)現(xiàn)緩存空了,去查詢數(shù)據(jù)庫,查到了修改前的舊數(shù)據(jù),放到了緩存中。隨后數(shù)據(jù)變更的程序完成了數(shù)據(jù)庫的修改。完了,數(shù)據(jù)庫和緩存中的數(shù)據(jù)不一樣了...
為什么上億流量高并發(fā)場景下,緩存會出現(xiàn)這個問題?
只有在對一個數(shù)據(jù)在并發(fā)的進(jìn)行讀寫的時候,才可能會出現(xiàn)這種問題。其實如果說你的并發(fā)量很低的話,特別是讀并發(fā)很低,每天訪問量就 1 萬次,那么很少的情況下,會出現(xiàn)剛才描述的那種不一致的場景。但是問題是,如果每天的是上億的流量,每秒并發(fā)讀是幾萬,每秒只要有數(shù)據(jù)更新的請求,就可能會出現(xiàn)上述的數(shù)據(jù)庫+緩存不一致的情況。
解決方案如下:
更新數(shù)據(jù)的時候,根據(jù)數(shù)據(jù)的唯一標(biāo)識,將操作路由之后,發(fā)送到一個 jvm 內(nèi)部隊列中。讀取數(shù)據(jù)的時候,如果發(fā)現(xiàn)數(shù)據(jù)不在緩存中,那么將重新讀取數(shù)據(jù)+更新緩存的操作,根據(jù)唯一標(biāo)識路由之后,也發(fā)送同一個 jvm 內(nèi)部隊列中。
一個隊列對應(yīng)一個工作線程,每個工作線程串行拿到對應(yīng)的操作,然后一條一條的執(zhí)行。這樣的話,一個數(shù)據(jù)變更的操作,先刪除緩存,然后再去更新數(shù)據(jù)庫,但是還沒完成更新。此時如果一個讀請求過來,讀到了空的緩存,那么可以先將緩存更新的請求發(fā)送到隊列中,此時會在隊列中積壓,然后同步等待緩存更新完成。
這里有一個優(yōu)化點,一個隊列中,其實多個更新緩存請求串在一起是沒意義的,因此可以做過濾,如果發(fā)現(xiàn)隊列中已經(jīng)有一個更新緩存的請求了,那么就不用再放個更新請求操作進(jìn)去了,直接等待前面的更新操作請求完成即可。
待那個隊列對應(yīng)的工作線程完成了上一個操作的數(shù)據(jù)庫的修改之后,才會去執(zhí)行下一個操作,也就是緩存更新的操作,此時會從數(shù)據(jù)庫中讀取最新的值,然后寫入緩存中。
如果請求還在等待時間范圍內(nèi),不斷輪詢發(fā)現(xiàn)可以取到值了,那么就直接返回;如果請求等待的時間超過一定時長,那么這一次直接從數(shù)據(jù)庫中讀取當(dāng)前的舊值。
高并發(fā)的場景下,該解決方案要注意的問題:
由于讀請求進(jìn)行了非常輕度的異步化,所以一定要注意讀超時的問題,每個讀請求必須在超時時間范圍內(nèi)返回。
該解決方案,大的風(fēng)險點在于說,可能數(shù)據(jù)更新很頻繁,導(dǎo)致隊列中積壓了大量更新操作在里面,然后讀請求會發(fā)生大量的超時,最后導(dǎo)致大量的請求直接走數(shù)據(jù)庫。務(wù)必通過一些模擬真實的測試,看看更新數(shù)據(jù)的頻率是怎樣的。
另外一點,因為一個隊列中,可能會積壓針對多個數(shù)據(jù)項的更新操作,因此需要根據(jù)自己的業(yè)務(wù)情況進(jìn)行測試,可能需要部署多個服務(wù),每個服務(wù)分?jǐn)傄恍?shù)據(jù)的更新操作。如果一個內(nèi)存隊列里居然會擠壓 100 個商品的庫存修改操作,每隔庫存修改操作要耗費 10ms 去完成,那么最后一個商品的讀請求,可能等待 10 * 100 = 1000ms = 1s 后,才能得到數(shù)據(jù),這個時候就導(dǎo)致讀請求的長時阻塞。
一定要做根據(jù)實際業(yè)務(wù)系統(tǒng)的運行情況,去進(jìn)行一些壓力測試,和模擬線上環(huán)境,去看看最繁忙的時候,內(nèi)存隊列可能會擠壓多少更新操作,可能會導(dǎo)致最后一個更新操作對應(yīng)的讀請求,會 hang 多少時間,如果讀請求在 200ms 返回,如果你計算過后,哪怕是最繁忙的時候,積壓 10 個更新操作,最多等待 200ms,那還可以的。
如果一個內(nèi)存隊列中可能積壓的更新操作特別多,那么你就要加機(jī)器,讓每個機(jī)器上部署的服務(wù)實例處理更少的數(shù)據(jù),那么每個內(nèi)存隊列中積壓的更新操作就會越少。
其實根據(jù)之前的項目經(jīng)驗,一般來說,數(shù)據(jù)的寫頻率是很低的,因此實際上正常來說,在隊列中積壓的更新操作應(yīng)該是很少的。像這種針對讀高并發(fā)、讀緩存架構(gòu)的項目,一般來說寫請求是非常少的,每秒的 QPS 能到幾百就不錯了。
我們來實際粗略測算一下。
如果一秒有 500 的寫操作,如果分成 5 個時間片,每 200ms 就 100 個寫操作,放到 20 個內(nèi)存隊列中,每個內(nèi)存隊列,可能就積壓 5 個寫操作。每個寫操作性能測試后,一般是在 20ms 左右就完成,那么針對每個內(nèi)存隊列的數(shù)據(jù)的讀請求,也就最多 hang 一會兒,200ms 以內(nèi)肯定能返回了。
經(jīng)過剛才簡單的測算,我們知道,單機(jī)支撐的寫 QPS 在幾百是沒問題的,如果寫 QPS 擴(kuò)大了 10 倍,那么就擴(kuò)容機(jī)器,擴(kuò)容 10 倍的機(jī)器,每個機(jī)器 20 個隊列。
這里還必須做好壓力測試,確保恰巧碰上上述情況的時候,還有一個風(fēng)險,就是突然間大量讀請求會在幾十毫秒的延時 hang 在服務(wù)上,看服務(wù)能不能扛的住,需要多少機(jī)器才能扛住大的極限情況的峰值。
但是因為并不是所有的數(shù)據(jù)都在同一時間更新,緩存也不會同一時間失效,所以每次可能也就是少數(shù)數(shù)據(jù)的緩存失效了,然后那些數(shù)據(jù)對應(yīng)的讀請求過來,并發(fā)量應(yīng)該也不會特別大。
可能這個服務(wù)部署了多個實例,那么必須保證說,執(zhí)行數(shù)據(jù)更新操作,以及執(zhí)行緩存更新操作的請求,都通過 Nginx 服務(wù)器路由到相同的服務(wù)實例上。
比如說,對同一個商品的讀寫請求,全部路由到同一臺機(jī)器上??梢宰约喝プ龇?wù)間的按照某個請求參數(shù)的 hash 路由,也可以用 Nginx 的 hash 路由功能等等。
熱點商品的路由問題,導(dǎo)致請求的傾斜
萬一某個商品的讀寫請求特別高,全部打到相同的機(jī)器的相同的隊列里面去了,可能會造成某臺機(jī)器的壓力過大。就是說,因為只有在商品數(shù)據(jù)更新的時候才會清空緩存,然后才會導(dǎo)致讀寫并發(fā),所以其實要根據(jù)業(yè)務(wù)系統(tǒng)去看,如果更新頻率不是太高的話,這個問題的影響并不是特別大,但是的確可能某些機(jī)器的負(fù)載會高一些。
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。