真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

隨機(jī)取數(shù)函數(shù)python 隨機(jī)取數(shù)函數(shù)rand

用python生成隨機(jī)數(shù)的幾種方法

1 從給定參數(shù)的正態(tài)分布中生成隨機(jī)數(shù)

成都創(chuàng)新互聯(lián)公司成立于2013年,是專(zhuān)業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項(xiàng)目網(wǎng)站制作、成都網(wǎng)站制作網(wǎng)站策劃,項(xiàng)目實(shí)施與項(xiàng)目整合能力。我們以讓每一個(gè)夢(mèng)想脫穎而出為使命,1280元維西做網(wǎng)站,已為上家服務(wù),為維西各地企業(yè)和個(gè)人服務(wù),聯(lián)系電話:18982081108

當(dāng)考慮從正態(tài)分布中生成隨機(jī)數(shù)時(shí),應(yīng)當(dāng)首先知道正態(tài)分布的均值和方差(標(biāo)準(zhǔn)差),有了這些,就可以調(diào)用python中現(xiàn)有的模塊和函數(shù)來(lái)生成隨機(jī)數(shù)了。這里調(diào)用了Numpy模塊中的random.normal函數(shù),由于邏輯非參簡(jiǎn)單,所有直接貼上代碼如下:

import numpy as np# 定義從正態(tài)分布中獲取隨機(jī)數(shù)的函數(shù)def get_normal_random_number(loc, scale): """ :param loc: 正態(tài)分布的均值 :param scale: 正態(tài)分布的標(biāo)準(zhǔn)差 :return:從正態(tài)分布中產(chǎn)生的隨機(jī)數(shù) """ # 正態(tài)分布中的隨機(jī)數(shù)生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模塊if __name__ == "__main__": # 函數(shù)調(diào)用 n = get_normal_random_number(loc=2, scale=2) # 打印結(jié)果 print(n) # 結(jié)果:3.275192443463058

2 從給定參數(shù)的均勻分布中獲取隨機(jī)數(shù)的函數(shù)

考慮從均勻分布中獲取隨機(jī)數(shù)的時(shí)候,要事先知道均勻分布的下界和上界,然后調(diào)用Numpy模塊的random.uniform函數(shù)生成隨機(jī)數(shù)。

import numpy as np# 定義從均勻分布中獲取隨機(jī)數(shù)的函數(shù)def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產(chǎn)生的隨機(jī)數(shù) """ # 均勻分布的隨機(jī)數(shù)生成 number = np.random.uniform(low, high) # 返回值 return number# 主模塊if __name__ == "__main__": # 函數(shù)調(diào)用 n = get_uniform_random_number(low=2, high=4) # 打印結(jié)果 print(n) # 結(jié)果:2.4462417140153114

3 按照指定概率生成隨機(jī)數(shù)

有時(shí)候我們需要按照指定的概率生成隨機(jī)數(shù),比如已知盒子中每種顏色的球的比例,猜測(cè)下一次取出的球的顏色。在這里介紹的問(wèn)題和上面的例子相似,要求給定一個(gè)概率列表,從列表對(duì)應(yīng)的數(shù)字列表或區(qū)間列表中生成隨機(jī)數(shù),分兩部分討論。

3.1 按照指定概率從數(shù)字列表中隨機(jī)抽取數(shù)字

假設(shè)給定一個(gè)數(shù)字列表和一個(gè)與之對(duì)應(yīng)的概率列表,兩個(gè)列表對(duì)應(yīng)位置的元素組成的元組即表示該數(shù)字在數(shù)字列表中以多大的概率出現(xiàn),那么如何根據(jù)這些已知條件從數(shù)字列表中按概率抽取隨機(jī)數(shù)呢?在這里我們考慮用均勻分布來(lái)模擬概率,代碼如下:

import numpy as npimport random# 定義從均勻分布中獲取隨機(jī)數(shù)的函數(shù)def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產(chǎn)生的隨機(jī)數(shù) """ # 均勻分布的隨機(jī)數(shù)生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從一個(gè)數(shù)字列表中以一定的概率取出對(duì)應(yīng)區(qū)間中數(shù)字的函數(shù)def get_number_by_pro(number_list, pro_list): """ :param number_list:數(shù)字列表 :param pro_list:數(shù)字對(duì)應(yīng)的概率列表 :return:按概率從數(shù)字列表中抽取的數(shù)字 """ # 用均勻分布中的樣本值來(lái)模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可迭代對(duì)象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 返回值 return number# 主模塊if __name__ == "__main__": # 數(shù)字列表 num_list = [1, 2, 3, 4, 5] # 對(duì)應(yīng)的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數(shù)調(diào)用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印結(jié)果 print(n) # 結(jié)果:1

3.2 按照指定概率從區(qū)間列表中的某個(gè)區(qū)間內(nèi)生成隨機(jī)數(shù)

給定一個(gè)區(qū)間列表和一個(gè)與之對(duì)應(yīng)的概率列表,兩個(gè)列表相應(yīng)位置的元素組成的元組即表示某數(shù)字出現(xiàn)在某區(qū)間內(nèi)的概率是多少,已知這些,我們?nèi)绾紊呻S機(jī)數(shù)呢?這里我們通過(guò)兩次使用均勻分布達(dá)到目的,代碼如下:

import numpy as npimport random# 定義從均勻分布中獲取隨機(jī)數(shù)的函數(shù)def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產(chǎn)生的隨機(jī)數(shù) """ # 均勻分布的隨機(jī)數(shù)生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從一個(gè)數(shù)字列表中以一定的概率取出對(duì)應(yīng)區(qū)間中數(shù)字的函數(shù)def get_number_by_pro(number_list, pro_list): """ :param number_list:數(shù)字列表 :param pro_list:數(shù)字對(duì)應(yīng)的概率列表 :return:按概率從數(shù)字列表中抽取的數(shù)字 """ # 用均勻分布中的樣本值來(lái)模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可迭代對(duì)象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 從區(qū)間[number. number - 1]上隨機(jī)抽取一個(gè)值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模塊if __name__ == "__main__": # 數(shù)字列表 num_list = [1, 2, 3, 4, 5] # 對(duì)應(yīng)的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數(shù)調(diào)用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印結(jié)果 print(n) # 結(jié)果:3.49683787011193

python如何隨機(jī)選取n個(gè)不同的數(shù)字

python隨機(jī)選取n個(gè)不同的數(shù)字的方法:

1、使用“import random”導(dǎo)入random包

2、通過(guò)for語(yǔ)句循環(huán)執(zhí)行n次“random.randint()”語(yǔ)句獲取n個(gè)隨機(jī)數(shù)并將隨機(jī)數(shù)輸入到列表中

n=10示例如下:

3、用set函數(shù)去重就可以了

完整代碼:

更多Python知識(shí),請(qǐng)關(guān)注:Python自學(xué)網(wǎng)?。?/p>

python用什么函數(shù)產(chǎn)生隨機(jī)數(shù)

在python中用于生成隨機(jī)數(shù)的模塊是random,在使用前需要import

random.random:

random.random():生成一個(gè)0-1之間的隨機(jī)浮點(diǎn)數(shù).例:

[python] view plain copy

import random

print random.random()

# 0.87594424128

random.uniform

random.uniform(a, b):生成[a,b]之間的浮點(diǎn)數(shù).例:

[python] view plain copy

import random

print random.uniform(0, 10)

# 5.27462570463

random.ranint

random.randint(a, b):生成[a,b]之間的整數(shù).例:

[python] view plain copy

import random

print random.randint(0, 10)

# 8

random.randrange

random.randrange(a, b, step):在指定的集合[a,b)中,以step為基數(shù)隨機(jī)取一個(gè)數(shù).如random.randrange(0, 20, 2),相當(dāng)于從[0,2,4,6,...,18]中隨機(jī)取一個(gè).例:

[python] view plain copy

import random

print random.randrange(0, 20, 2)

# 14


文章標(biāo)題:隨機(jī)取數(shù)函數(shù)python 隨機(jī)取數(shù)函數(shù)rand
鏈接分享:http://weahome.cn/article/hepcjd.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部