import java.util.ArrayList;
創(chuàng)新互聯(lián)是一家集網(wǎng)站建設(shè),房山企業(yè)網(wǎng)站建設(shè),房山品牌網(wǎng)站建設(shè),網(wǎng)站定制,房山網(wǎng)站建設(shè)報價,網(wǎng)絡(luò)營銷,網(wǎng)絡(luò)優(yōu)化,房山網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強(qiáng)企業(yè)競爭力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時我們時刻保持專業(yè)、時尚、前沿,時刻以成就客戶成長自我,堅(jiān)持不斷學(xué)習(xí)、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實(shí)用型網(wǎng)站。
// 樹的一個節(jié)點(diǎn)
class TreeNode {
Object _value = null; // 他的值
TreeNode _parent = null; // 他的父節(jié)點(diǎn),根節(jié)點(diǎn)沒有PARENT
ArrayList _childList = new ArrayList(); // 他的孩子節(jié)點(diǎn)
public TreeNode( Object value, TreeNode parent ){
this._parent = parent;
this._value = value;
}
public TreeNode getParent(){
return _parent;
}
public String toString() {
return _value.toString();
}
}
public class Tree {
// 給出寬度優(yōu)先遍歷的值數(shù)組,構(gòu)建出一棵多叉樹
// null 值表示一個層次的結(jié)束
// "|" 表示一個層次中一個父親節(jié)點(diǎn)的孩子輸入結(jié)束
// 如:給定下面的值數(shù)組:
// { "root", null, "left", "right", null }
// 則構(gòu)建出一個根節(jié)點(diǎn),帶有兩個孩子("left","right")的樹
public Tree( Object[] values ){
// 創(chuàng)建根
_root = new TreeNode( values[0], null );
// 創(chuàng)建下面的子節(jié)點(diǎn)
TreeNode currentParent = _root; // 用于待創(chuàng)建節(jié)點(diǎn)的父親
//TreeNode nextParent = null;
int currentChildIndex = 0; // 表示 currentParent 是他的父親的第幾個兒子
//TreeNode lastNode = null; // 最后一個創(chuàng)建出來的TreeNode,用于找到他的父親
for ( int i = 2; i values.length; i++ ){
// 如果null ,表示下一個節(jié)點(diǎn)的父親是當(dāng)前節(jié)點(diǎn)的父親的第一個孩子節(jié)點(diǎn)
if ( values[i] == null ){
currentParent = (TreeNode)currentParent._childList.get(0);
currentChildIndex = 0;
continue;
}
// 表示一個父節(jié)點(diǎn)的所有孩子輸入完畢
if ( values[i].equals("|") ){
if ( currentChildIndex+1 currentParent._childList.size() ){
currentChildIndex++;
currentParent = (TreeNode)currentParent._parent._childList.get(currentChildIndex);
}
continue;
}
TreeNode child = createChildNode( currentParent, values[i] );
}
}
TreeNode _root = null;
public TreeNode getRoot(){
return _root;
}
/**
// 按寬度優(yōu)先遍歷,打印出parent子樹所有的節(jié)點(diǎn)
private void printSteps( TreeNode parent, int currentDepth ){
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
System.out.println(currentDepth+":"+child);
}
if ( parent._childList.size() != 0 ) System.out.println(""+null);// 為了避免葉子節(jié)點(diǎn)也會打印null
//打印 parent 同層的節(jié)點(diǎn)的孩子
if ( parent._parent != null ){ // 不是root
int i = 1;
while ( i parent._parent._childList.size() ){// parent 的父親還有孩子
TreeNode current = (TreeNode)parent._parent._childList.get(i);
printSteps( current, currentDepth );
i++;
}
}
// 遞歸調(diào)用,打印所有節(jié)點(diǎn)
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
printSteps( child, currentDepth+1 );
}
}
// 按寬度優(yōu)先遍歷,打印出parent子樹所有的節(jié)點(diǎn)
public void printSteps(){
System.out.println(""+_root);
System.out.println(""+null);
printSteps(_root, 1 );
}**/
// 將給定的值做為 parent 的孩子,構(gòu)建節(jié)點(diǎn)
private TreeNode createChildNode( TreeNode parent, Object value ){
TreeNode child = new TreeNode( value , parent );
parent._childList.add( child );
return child;
}
public static void main(String[] args) {
Tree tree = new Tree( new Object[]{ "root", null,
"left", "right", null,
"l1","l2","l3", "|", "r1","r2",null } );
//tree.printSteps();
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(1) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(2) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(1) );
}
}
java:二叉樹添加和查詢方法
package arrays.myArray;
public class BinaryTree {
private Node root;
// 添加數(shù)據(jù)
public void add(int data) {
// 遞歸調(diào)用
if (null == root)
root = new Node(data, null, null);
else
addTree(root, data);
}
private void addTree(Node rootNode, int data) {
// 添加到左邊
if (rootNode.data data) {
if (rootNode.left == null)
rootNode.left = new Node(data, null, null);
else
addTree(rootNode.left, data);
} else {
// 添加到右邊
if (rootNode.right == null)
rootNode.right = new Node(data, null, null);
else
addTree(rootNode.right, data);
}
}
// 查詢數(shù)據(jù)
public void show() {
showTree(root);
}
private void showTree(Node node) {
if (node.left != null) {
showTree(node.left);
}
System.out.println(node.data);
if (node.right != null) {
showTree(node.right);
}
}
}
class Node {
int data;
Node left;
Node right;
public Node(int data, Node left, Node right) {
this.data = data;
this.left = left;
this.right = right;
}
}
計算機(jī)科學(xué)中,二叉樹是每個結(jié)點(diǎn)最多有兩個子樹的有序樹。通常子樹的根被稱作“左子樹”(left subtree)和“右子樹”(right subtree)。二叉樹常被用作二叉查找樹和二叉堆或是二叉排序樹。
二叉樹的每個結(jié)點(diǎn)至多只有二棵子樹(不存在度大于2的結(jié)點(diǎn)),二叉樹的子樹有左右之分,次序不能顛倒。二叉樹的第i層至多有2的 i -1次方個結(jié)點(diǎn);深度為k的二叉樹至多有2^(k) -1個結(jié)點(diǎn);對任何一棵二叉樹T,如果其終端結(jié)點(diǎn)數(shù)(即葉子結(jié)點(diǎn)數(shù))為n0,度為2的結(jié)點(diǎn)數(shù)為n2,則n0 = n2 + 1。
樹是由一個或多個結(jié)點(diǎn)組成的有限集合,其中:
⒈必有一個特定的稱為根(ROOT)的結(jié)點(diǎn);
二叉樹
⒉剩下的結(jié)點(diǎn)被分成n=0個互不相交的集合T1、T2、......Tn,而且, 這些集合的每一個又都是樹。樹T1、T2、......Tn被稱作根的子樹(Subtree)。
樹的遞歸定義如下:(1)至少有一個結(jié)點(diǎn)(稱為根)(2)其它是互不相交的子樹
1.樹的度——也即是寬度,簡單地說,就是結(jié)點(diǎn)的分支數(shù)。以組成該樹各結(jié)點(diǎn)中最大的度作為該樹的度,如上圖的樹,其度為2;樹中度為零的結(jié)點(diǎn)稱為葉結(jié)點(diǎn)或終端結(jié)點(diǎn)。樹中度不為零的結(jié)點(diǎn)稱為分枝結(jié)點(diǎn)或非終端結(jié)點(diǎn)。除根結(jié)點(diǎn)外的分枝結(jié)點(diǎn)統(tǒng)稱為內(nèi)部結(jié)點(diǎn)。
2.樹的深度——組成該樹各結(jié)點(diǎn)的最大層次。
3.森林——指若干棵互不相交的樹的集合,如上圖,去掉根結(jié)點(diǎn)A,其原來的二棵子樹T1、T2、T3的集合{T1,T2,T3}就為森林;
4.有序樹——指樹中同層結(jié)點(diǎn)從左到右有次序排列,它們之間的次序不能互換,這樣的樹稱為有序樹,否則稱為無序樹。
樹的表示
樹的表示方法有許多,常用的方法是用括號:先將根結(jié)點(diǎn)放入一對圓括號中,然后把它的子樹由左至右的順序放入括號中,而對子樹也采用同樣的方法處理;同層子樹與它的根結(jié)點(diǎn)用圓括號括起來,同層子樹之間用逗號隔開,最后用閉括號括起來。如右圖可寫成如下形式:
二叉樹
(a( b(d,e), c( f( ,g(h,i) ), )))
定義一個結(jié)點(diǎn)類:\x0d\x0apublic class Node {\x0d\x0a private int value;\x0d\x0a private Node leftNode;\x0d\x0a private Node rightNode;\x0d\x0a \x0d\x0a public Node getRightNode() {\x0d\x0a return rightNode;\x0d\x0a }\x0d\x0a public void setRightNode(Node rightNode) {\x0d\x0a this.rightNode = rightNode;\x0d\x0a }\x0d\x0a public int getValue() {\x0d\x0a return value;\x0d\x0a }\x0d\x0a public void setValue(int value) {\x0d\x0a this.value = value;\x0d\x0a }\x0d\x0a public Node getLeftNode() {\x0d\x0a return leftNode;\x0d\x0a }\x0d\x0a public void setLeftNode(Node leftNode) {\x0d\x0a this.leftNode = leftNode;\x0d\x0a }\x0d\x0a \x0d\x0a}\x0d\x0a \x0d\x0a初始化結(jié)點(diǎn)樹:\x0d\x0apublic void initNodeTree()\x0d\x0a {\x0d\x0a int nodeNumber;\x0d\x0a HashMap map = new HashMap();\x0d\x0a Node nodeTree = new Node();\x0d\x0a \x0d\x0a Scanner reader = new Scanner(System.in);\x0d\x0a \x0d\x0a nodeNumber = reader.nextInt();\x0d\x0a for(int i = 0; i map, int nodeValue, Node parentNode) {\x0d\x0a int value = 0;\x0d\x0a if (map.containsKey("L" + nodeValue)) {\x0d\x0a value = map.get("L" + nodeValue);\x0d\x0a Node leftNode = new Node();\x0d\x0a leftNode.setValue(value);\x0d\x0a parentNode.setLeftNode(leftNode);\x0d\x0a \x0d\x0a setChildNode(map, value, leftNode);\x0d\x0a } \x0d\x0a \x0d\x0a if (map.containsKey("R" + nodeValue)) {\x0d\x0a value = map.get("R" + nodeValue);\x0d\x0a Node rightNode = new Node();\x0d\x0a rightNode.setValue(value);\x0d\x0a parentNode.setRightNode(rightNode);\x0d\x0a \x0d\x0a setChildNode(map, value, rightNode);\x0d\x0a }\x0d\x0a }\x0d\x0a \x0d\x0a前序遍歷該結(jié)點(diǎn)樹:\x0d\x0apublic void preTraversal(Node nodeTree) {\x0d\x0a if (nodeTree != null) {\x0d\x0a System.out.print(nodeTree.getValue() + "\t");\x0d\x0a preTraversal(nodeTree.getLeftNode());\x0d\x0a preTraversal(nodeTree.getRightNode());\x0d\x0a }\x0d\x0a }
從鍵盤接受輸入(先序),以二叉鏈表作為存儲結(jié)構(gòu),建立二叉樹(以先序來建立)
結(jié)果不是唯一
首先我想問為什么要用LinkedList 來建立二叉樹呢? LinkedList 是線性表,
樹是樹形的, 似乎不太合適。
其實(shí)也可以用數(shù)組完成,而且效率更高.
關(guān)鍵是我覺得你這個輸入本身就是一個二叉樹啊,
String input = "ABCDE F G";
節(jié)點(diǎn)編號從0到8. 層次遍歷的話:
對于節(jié)點(diǎn)i.
leftChild = input.charAt(2*i+1); //做子樹
rightChild = input.charAt(2*i+2);//右子樹
如果你要將帶有節(jié)點(diǎn)信息的樹存到LinkedList里面, 先建立一個節(jié)點(diǎn)類:
class Node{
public char cValue;
public Node leftChild;
public Node rightChild;
public Node(v){
this.cValue = v;
}
}
然后遍歷input,建立各個節(jié)點(diǎn)對象.
LinkedList tree = new LinkedList();
for(int i=0;i input.length;i++)
LinkedList.add(new Node(input.charAt(i)));
然后為各個節(jié)點(diǎn)設(shè)置左右子樹:
for(int i=0;iinput.length;i++){
((Node)tree.get(i)).leftChild = (Node)tree.get(2*i+1);
((Node)tree.get(i)).rightChild = (Node)tree.get(2*i+2);
}
這樣LinkedList 就存儲了整個二叉樹. 而第0個元素就是樹根,思路大體是這樣吧。