作者:邁克爾·貝耶勒(Michael Beyeler)
創(chuàng)新互聯(lián)于2013年成立,先為長(zhǎng)寧等服務(wù)建站,長(zhǎng)寧等地企業(yè),進(jìn)行企業(yè)商務(wù)咨詢服務(wù)。為長(zhǎng)寧企業(yè)網(wǎng)站制作PC+手機(jī)+微官網(wǎng)三網(wǎng)同步一站式服務(wù)解決您的所有建站問題。
如需轉(zhuǎn)載請(qǐng)聯(lián)系華章 科技
如果已安裝Anaconda Python版本,就已經(jīng)安裝好了可以使用的 Matplotlib。否則,可能要訪問官網(wǎng)并從中獲取安裝說明:
正如使用np作為 NumPy 的縮寫,我們將使用一些標(biāo)準(zhǔn)的縮寫來表示 Matplotlib 的引入:
在本書中,plt接口會(huì)被頻繁使用。
讓我們創(chuàng)建第一個(gè)繪圖。
假設(shè)想要畫出正弦函數(shù)sin(x)的線性圖。得到函數(shù)在x坐標(biāo)軸上0≤x<10內(nèi)所有點(diǎn)的值。我們將使用 NumPy 中的 linspace 函數(shù)來在x坐標(biāo)軸上創(chuàng)建一個(gè)從0到10的線性空間,以及100個(gè)采樣點(diǎn):
可以使用 NumPy 中的sin函數(shù)得到所有x點(diǎn)的值,并通過調(diào)用plt中的plot函數(shù)把結(jié)果畫出來:
你親自嘗試了嗎?發(fā)生了什么嗎?有沒有什么東西出現(xiàn)?
實(shí)際情況是,取決于你在哪里運(yùn)行腳本,可能無法看到任何東西。有下面幾種可能性:
1. 從.py腳本中繪圖
如果從一個(gè)腳本中運(yùn)行 Matplotlib,需要加上下面的這行調(diào)用:
在腳本末尾調(diào)用這個(gè)函數(shù),你的繪圖就會(huì)出現(xiàn)!
2. 從 IPython shell 中繪圖
這實(shí)際上是交互式地執(zhí)行Matplotlib最方便的方式。為了讓繪圖出現(xiàn),需要在啟動(dòng) IPython 后使用所謂的%matplotlib魔法命令。
接下來,無須每次調(diào)用plt.show()函數(shù),所有的繪圖將會(huì)自動(dòng)出現(xiàn)。
3. 從 Jupyter Notebook 中繪圖
如果你是從基于瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會(huì)有兩種輸出選項(xiàng):
在本書中,將會(huì)使用inline選項(xiàng):
現(xiàn)在再次嘗試一下:
上面的命令會(huì)得到下面的繪圖輸出結(jié)果:
如果想要把繪圖保存下來留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
僅需要確保你使用了支持的文件后綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作為本章最后一個(gè)測(cè)試,讓我們對(duì)外部數(shù)據(jù)集進(jìn)行可視化,比如scikit-learn中的數(shù)字?jǐn)?shù)據(jù)集。
為此,需要三個(gè)可視化工具:
那么開始引入這些包吧:
第一步是載入實(shí)際數(shù)據(jù):
如果沒記錯(cuò)的話,digits應(yīng)該有兩個(gè)不同的數(shù)據(jù)域:data域包含了真正的圖像數(shù)據(jù),target域包含了圖像的標(biāo)簽。相對(duì)于相信我們的記憶,我們還是應(yīng)該對(duì)digits稍加 探索 。輸入它的名字,添加一個(gè)點(diǎn)號(hào),然后按Tab鍵:digits.TAB,這個(gè)操作將向我們展示digits也包含了一些其他的域,比如一個(gè)名為images的域。images和data這兩個(gè)域,似乎簡(jiǎn)單從形狀上就可以區(qū)分。
兩種情況中,第一維對(duì)應(yīng)的都是數(shù)據(jù)集中的圖像數(shù)量。然而,data中所有像素都在一個(gè)大的向量中排列,而images保留了各個(gè)圖像8×8的空間排列。
因此,如果想要繪制出一副單獨(dú)的圖像,使用images將更加合適。首先,使用NumPy的數(shù)組切片從數(shù)據(jù)集中獲取一幅圖像:
這里是從1797個(gè)元素的數(shù)組中獲取了它的第一行數(shù)據(jù),這行數(shù)據(jù)對(duì)應(yīng)的是8×8=64個(gè)像素。下面就可以使用plt中的imshow函數(shù)來繪制這幅圖像:
上面的命令得到下面的輸出:
此外,這里也使用cmap參數(shù)指定了一個(gè)顏色映射。默認(rèn)情況下,Matplotlib 使用MATLAB默認(rèn)的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。
最后,可以使用plt的subplot函數(shù)繪制全部數(shù)字的樣例。subplot函數(shù)與MATLAB中的函數(shù)一樣,需要指定行數(shù)、列數(shù)以及當(dāng)前的子繪圖索引(從1開始計(jì)算)。我們將使用for 循環(huán)在數(shù)據(jù)集中迭代出前十張圖像,每張圖像都分配到一個(gè)單獨(dú)的子繪圖中。
這會(huì)得到下面的輸出結(jié)果:
關(guān)于作者:Michael Beyeler,華盛頓大學(xué)神經(jīng)工程和數(shù)據(jù)科學(xué)專業(yè)的博士后,主攻仿生視覺計(jì)算模型,用以為盲人植入人工視網(wǎng)膜(仿生眼睛),改善盲人的視覺體驗(yàn)。 他的工作屬于神經(jīng)科學(xué)、計(jì)算機(jī)工程、計(jì)算機(jī)視覺和機(jī)器學(xué)習(xí)的交叉領(lǐng)域。同時(shí)他也是多個(gè)開源項(xiàng)目的積極貢獻(xiàn)者。
本文摘編自《機(jī)器學(xué)習(xí):使用OpenCV和Python進(jìn)行智能圖像處理》,經(jīng)出版方授權(quán)發(fā)布。
1,xlable,ylable設(shè)置x,y軸的標(biāo)題文字。
2,title設(shè)置標(biāo)題。
3,xlim,ylim設(shè)置x,y軸顯示范圍。
plt.show()顯示繪圖窗口,通常情況下,show()會(huì)阻礙程序運(yùn)行,帶-wthread等參數(shù)的環(huán)境下,窗口不會(huì)關(guān)閉。
plt.saveFig()保存圖像。
面向?qū)ο罄L圖
1,當(dāng)前圖表和子圖可以用gcf(),gca()獲得。
subplot()繪制包含多個(gè)圖表的子圖。
configure subplots,可調(diào)節(jié)子圖與圖表邊框距離。
可以通過修改配置文件更改對(duì)象屬性。
圖標(biāo)顯示中文
1,在程序中直接指定字體。
2, 在程序開始修改配置字典reParams.
3,修改配置文件。
Artist對(duì)象
1,圖標(biāo)的繪制領(lǐng)域。
2,如何在FigureCanvas對(duì)象上繪圖。
3,如何使用Renderer在FigureCanvas對(duì)象上繪圖。
FigureCanvas和Render處理底層圖像操作,Artist處理高層結(jié)構(gòu)。
分為簡(jiǎn)單對(duì)象和容器對(duì)象,簡(jiǎn)單的Aritist是標(biāo)準(zhǔn)的繪圖元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器類型包含許多簡(jiǎn)單的的 Aritist對(duì)象,使他們構(gòu)成一個(gè)整體,例如Axis,Axes,Figure等。
直接創(chuàng)建Artist對(duì)象進(jìn)項(xiàng)繪圖操作步奏:
1,創(chuàng)建Figure對(duì)象(通過figure()函數(shù),會(huì)進(jìn)行許多初始化操作,不建議直接創(chuàng)建。)
2,為Figure對(duì)象創(chuàng)建一個(gè)或多個(gè)Axes對(duì)象。
3,調(diào)用Axes對(duì)象的方法創(chuàng)建各類簡(jiǎn)單的Artist對(duì)象。
Figure容器
如何找到指定的Artist對(duì)象。
1,可調(diào)用add_subplot()和add_axes()方法向圖表添加子圖。
2,可使用for循環(huán)添加?xùn)鸥瘛?/p>
3,可通過transform修改坐標(biāo)原點(diǎn)。
Axes容器
1,patch修改背景。
2,包含坐標(biāo)軸,坐標(biāo)網(wǎng)格,刻度標(biāo)簽,坐標(biāo)軸標(biāo)題等內(nèi)容。
3,get_ticklabels(),,get-ticklines獲得刻度標(biāo)簽和刻度線。
1,可對(duì)曲線進(jìn)行插值。
2,fill_between()繪制交點(diǎn)。
3,坐標(biāo)變換。
4,繪制陰影。
5,添加注釋。
1,繪制直方圖的函數(shù)是
2,箱線圖(Boxplot)也稱箱須圖(Box-whisker Plot),是利用數(shù)據(jù)中的五個(gè)統(tǒng)計(jì)量:最小值、第一四分位
數(shù)、中位數(shù)、第三四分位數(shù)與最大值來描述數(shù)據(jù)的一種方法,它可以粗略地看出數(shù)據(jù)是否具有對(duì)稱性以及分
布的分散程度等信息,特別可以用于對(duì)幾個(gè)樣本的比較。
3,餅圖就是把一個(gè)圓盤按所需表達(dá)變量的觀察數(shù)劃分為若干份,每一份的角度(即面積)等價(jià)于每個(gè)觀察
值的大小。
4,散點(diǎn)圖
5,QQ圖
低層繪圖函數(shù)
類似于barplot(),dotchart()和plot()這樣的函數(shù)采用低層的繪圖函數(shù)來畫線和點(diǎn),來表達(dá)它們?cè)陧撁嫔戏胖玫奈恢靡约捌渌鞣N特征。
在這一節(jié)中,我們會(huì)描述一些低層的繪圖函數(shù),用戶也可以調(diào)用這些函數(shù)用于繪圖。首先我們先講一下R怎么描述一個(gè)頁面;然后我們講怎么在頁面上添加點(diǎn),線和文字;最后講一下怎么修改一些基本的圖形。
繪圖區(qū)域與邊界
R在繪圖時(shí),將顯示區(qū)域劃分為幾個(gè)部分。繪制區(qū)域顯示了根據(jù)數(shù)據(jù)描繪出來的圖像,在此區(qū)域內(nèi)R根據(jù)數(shù)據(jù)選擇一個(gè)坐標(biāo)系,通過顯示出來的坐標(biāo)軸可以看到R使用的坐標(biāo)系。在繪制區(qū)域之外是邊沿區(qū),從底部開始按順時(shí)針方向分別用數(shù)字1到4表示。文字和標(biāo)簽通常顯示在邊沿區(qū)域內(nèi),按照從內(nèi)到外的行數(shù)先后顯示。
添加對(duì)象
在繪制的圖像上還可以繼續(xù)添加若干對(duì)象,下面是幾個(gè)有用的函數(shù),以及對(duì)其功能的說明。
?points(x, y, ...),添加點(diǎn)
?lines(x, y, ...),添加線段
?text(x, y, labels, ...),添加文字
?abline(a, b, ...),添加直線y=a+bx
?abline(h=y, ...),添加水平線
?abline(v=x, ...),添加垂直線
?polygon(x, y, ...),添加一個(gè)閉合的多邊形
?segments(x0, y0, x1, y1, ...),畫線段
?arrows(x0, y0, x1, y1, ...),畫箭頭
?symbols(x, y, ...),添加各種符號(hào)
?legend(x, y, legend, ...),添加圖列說明
pre
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def func(x):
return -(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre