前段時間在golang-China讀到這個貼:
創(chuàng)新互聯(lián)建站專注于昌圖企業(yè)網(wǎng)站建設(shè),成都響應(yīng)式網(wǎng)站建設(shè)公司,成都商城網(wǎng)站開發(fā)。昌圖網(wǎng)站建設(shè)公司,為昌圖等地區(qū)提供建站服務(wù)。全流程按需網(wǎng)站設(shè)計,專業(yè)設(shè)計,全程項目跟蹤,創(chuàng)新互聯(lián)建站專業(yè)和態(tài)度為您提供的服務(wù)
個人覺得golang十分適合進(jìn)行網(wǎng)游服務(wù)器端開發(fā),寫下這篇文章總結(jié)一下。
從網(wǎng)游的角度看:
要成功的運營一款網(wǎng)游,很大程度上依賴于玩家自發(fā)形成的社區(qū)。只有玩家自發(fā)形成一個穩(wěn)定的生態(tài)系統(tǒng),游戲才能持續(xù)下去,避免鬼城的出現(xiàn)。而這就需要多次大量導(dǎo)入用戶,在同時在線用戶量達(dá)到某個臨界點的時候,才有可能完成。因此,多人同時在線十分有必要。
再來看網(wǎng)游的常見玩法,除了排行榜這類統(tǒng)計和數(shù)據(jù)匯總的功能外,基本沒有需要大量CPU時間的應(yīng)用。以前的項目里,即時戰(zhàn)斗產(chǎn)生的各種傷害計算對CPU的消耗也不大。玩家要完成一次操作,需要通過客戶端-服務(wù)器端-客戶端這樣一個來回,為了獲得高響應(yīng)速度,滿足玩家體驗,服務(wù)器端的處理也不能占用太多時間。所以,每次請求對應(yīng)的CPU占用是比較小的。
網(wǎng)游的IO主要分兩個方面,一個是網(wǎng)絡(luò)IO,一個是磁盤IO。網(wǎng)絡(luò)IO方面,可以分成美術(shù)資源的IO和游戲邏輯指令的IO,這里主要分析游戲邏輯的IO。游戲邏輯的IO跟CPU占用的情況相似,每次請求的字節(jié)數(shù)很小,但由于多人同時在線,因此并發(fā)數(shù)相當(dāng)高。另外,地圖信息的廣播也會帶來比較頻繁的網(wǎng)絡(luò)通信。磁盤IO方面,主要是游戲數(shù)據(jù)的保存。采用不同的數(shù)據(jù)庫,會有比較大的區(qū)別。以前的項目里,就經(jīng)歷了從MySQL轉(zhuǎn)向MongoDB這種內(nèi)存數(shù)據(jù)庫的過程,磁盤IO不再是瓶頸??傮w來說,還是用內(nèi)存做一級緩沖,避免大量小數(shù)據(jù)塊讀寫的方案。
針對網(wǎng)游的這些特點,golang的語言特性十分適合開發(fā)游戲服務(wù)器端。
首先,go語言提供goroutine機(jī)制作為原生的并發(fā)機(jī)制。每個goroutine所需的內(nèi)存很少,實際應(yīng)用中可以啟動大量的goroutine對并發(fā)連接進(jìn)行響應(yīng)。goroutine與gevent中的greenlet很相像,遇到IO阻塞的時候,調(diào)度器就會自動切換到另一個goroutine執(zhí)行,保證CPU不會因為IO而發(fā)生等待。而goroutine與gevent相比,沒有了python底層的GIL限制,就不需要利用多進(jìn)程來榨取多核機(jī)器的性能了。通過設(shè)置最大線程數(shù),可以控制go所啟動的線程,每個線程執(zhí)行一個goroutine,讓CPU滿負(fù)載運行。
同時,go語言為goroutine提供了獨到的通信機(jī)制channel。channel發(fā)生讀寫的時候,也會掛起當(dāng)前操作channel的goroutine,是一種同步阻塞通信。這樣既達(dá)到了通信的目的,又實現(xiàn)同步,用CSP模型的觀點看,并發(fā)模型就是通過一組進(jìn)程和進(jìn)程間的事件觸發(fā)解決任務(wù)的。雖然說,主流的編程語言之間,只要是圖靈完備的,他們就都能實現(xiàn)相同的功能。但go語言提供的這種協(xié)程間通信機(jī)制,十分優(yōu)雅地揭示了協(xié)程通信的本質(zhì),避免了以往鎖的顯式使用帶給程序員的心理負(fù)擔(dān),確是一大優(yōu)勢。進(jìn)行網(wǎng)游開發(fā)的程序員,可以將游戲邏輯按照單線程阻塞式的寫,不需要額外考慮線程調(diào)度的問題,以及線程間數(shù)據(jù)依賴的問題。因為,線程間的channel通信,已經(jīng)表達(dá)了線程間的數(shù)據(jù)依賴關(guān)系了,而go的調(diào)度器會給予妥善的處理。
另外,go語言提供的gc機(jī)制,以及對指針的保護(hù)式使用,可以大大減輕程序員的開發(fā)壓力,提高開發(fā)效率。
展望未來,我期待go語言社區(qū)能夠提供更多的goroutine間的隔離機(jī)制。個人十分推崇erlang社區(qū)的脆崩哲學(xué),推動應(yīng)用發(fā)生預(yù)期外行為時,盡早崩潰,再fork出新進(jìn)程處理新的請求。對于協(xié)程機(jī)制,需要由程序員保證執(zhí)行的函數(shù)不會發(fā)生死循環(huán),導(dǎo)致線程卡死。如果能夠定制goroutine所執(zhí)行函數(shù)的最大CPU執(zhí)行時間,及所能使用的最大內(nèi)存空間,對于提升系統(tǒng)的魯棒性,大有裨益。
1. 介紹
最近在研究一些消息中間件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一個基于Go語言的分布式實時消息平臺,它基于MIT開源協(xié)議發(fā)布,由bitly公司開源出來的一款簡單易用的消息中間件。
官方和第三方還為NSQ開發(fā)了眾多客戶端功能庫,如官方提供的基于HTTP的nsqd、Go客戶端go-nsq、Python客戶端pynsq、基于Node.js的JavaScript客戶端nsqjs、異步C客戶端libnsq、Java客戶端nsq-java以及基于各種語言的眾多第三方客戶端功能庫。
1.1 Features
1). Distributed
NSQ提供了分布式的,去中心化,且沒有單點故障的拓?fù)浣Y(jié)構(gòu),穩(wěn)定的消息傳輸發(fā)布保障,能夠具有高容錯和HA(高可用)特性。
2). Scalable易于擴(kuò)展
NSQ支持水平擴(kuò)展,沒有中心化的brokers。內(nèi)置的發(fā)現(xiàn)服務(wù)簡化了在集群中增加節(jié)點。同時支持pub-sub和load-balanced 的消息分發(fā)。
3). Ops Friendly
NSQ非常容易配置和部署,生來就綁定了一個管理界面。二進(jìn)制包沒有運行時依賴。官方有Docker image。
4.Integrated高度集成
官方的 Go 和 Python庫都有提供。而且為大多數(shù)語言提供了庫。
1.2 組件
1.3 拓?fù)浣Y(jié)構(gòu)
NSQ推薦通過他們相應(yīng)的nsqd實例使用協(xié)同定位發(fā)布者,這意味著即使面對網(wǎng)絡(luò)分區(qū),消息也會被保存在本地,直到它們被一個消費者讀取。更重要的是,發(fā)布者不必去發(fā)現(xiàn)其他的nsqd節(jié)點,他們總是可以向本地實例發(fā)布消息。
NSQ
首先,一個發(fā)布者向它的本地nsqd發(fā)送消息,要做到這點,首先要先打開一個連接,然后發(fā)送一個包含topic和消息主體的發(fā)布命令,在這種情況下,我們將消息發(fā)布到事件topic上以分散到我們不同的worker中。
事件topic會復(fù)制這些消息并且在每一個連接topic的channel上進(jìn)行排隊,在我們的案例中,有三個channel,它們其中之一作為檔案channel。消費者會獲取這些消息并且上傳到S3。
nsqd
每個channel的消息都會進(jìn)行排隊,直到一個worker把他們消費,如果此隊列超出了內(nèi)存限制,消息將會被寫入到磁盤中。Nsqd節(jié)點首先會向nsqlookup廣播他們的位置信息,一旦它們注冊成功,worker將會從nsqlookup服務(wù)器節(jié)點上發(fā)現(xiàn)所有包含事件topic的nsqd節(jié)點。
nsqlookupd
2. Internals
2.1 消息傳遞擔(dān)保
1)客戶表示已經(jīng)準(zhǔn)備好接收消息
2)NSQ 發(fā)送一條消息,并暫時將數(shù)據(jù)存儲在本地(在 re-queue 或 timeout)
3)客戶端回復(fù) FIN(結(jié)束)或 REQ(重新排隊)分別指示成功或失敗。如果客戶端沒有回復(fù), NSQ 會在設(shè)定的時間超時,自動重新排隊消息
這確保了消息丟失唯一可能的情況是不正常結(jié)束 nsqd 進(jìn)程。在這種情況下,這是在內(nèi)存中的任何信息(或任何緩沖未刷新到磁盤)都將丟失。
如何防止消息丟失是最重要的,即使是這個意外情況可以得到緩解。一種解決方案是構(gòu)成冗余 nsqd對(在不同的主機(jī)上)接收消息的相同部分的副本。因為你實現(xiàn)的消費者是冪等的,以兩倍時間處理這些消息不會對下游造成影響,并使得系統(tǒng)能夠承受任何單一節(jié)點故障而不會丟失信息。
2.2 簡化配置和管理
單個 nsqd 實例被設(shè)計成可以同時處理多個數(shù)據(jù)流。流被稱為“話題”和話題有 1 個或多個“通道”。每個通道都接收到一個話題中所有消息的拷貝。在實踐中,一個通道映射到下行服務(wù)消費一個話題。
在更底的層面,每個 nsqd 有一個與 nsqlookupd 的長期 TCP 連接,定期推動其狀態(tài)。這個數(shù)據(jù)被 nsqlookupd 用于給消費者通知 nsqd 地址。對于消費者來說,一個暴露的 HTTP /lookup 接口用于輪詢。為話題引入一個新的消費者,只需啟動一個配置了 nsqlookup 實例地址的 NSQ 客戶端。無需為添加任何新的消費者或生產(chǎn)者更改配置,大大降低了開銷和復(fù)雜性。
2.3 消除單點故障
NSQ被設(shè)計以分布的方式被使用。nsqd 客戶端(通過 TCP )連接到指定話題的所有生產(chǎn)者實例。沒有中間人,沒有消息代理,也沒有單點故障。
這種拓?fù)浣Y(jié)構(gòu)消除單鏈,聚合,反饋。相反,你的消費者直接訪問所有生產(chǎn)者。從技術(shù)上講,哪個客戶端連接到哪個 NSQ 不重要,只要有足夠的消費者連接到所有生產(chǎn)者,以滿足大量的消息,保證所有東西最終將被處理。對于 nsqlookupd,高可用性是通過運行多個實例來實現(xiàn)。他們不直接相互通信和數(shù)據(jù)被認(rèn)為是最終一致。消費者輪詢所有的配置的 nsqlookupd 實例和合并 response。失敗的,無法訪問的,或以其他方式故障的節(jié)點不會讓系統(tǒng)陷于停頓。
2.4 效率
對于數(shù)據(jù)的協(xié)議,通過推送數(shù)據(jù)到客戶端最大限度地提高性能和吞吐量的,而不是等待客戶端拉數(shù)據(jù)。這個概念,稱之為 RDY 狀態(tài),基本上是客戶端流量控制的一種形式。
efficiency
2.5 心跳和超時
組合應(yīng)用級別的心跳和 RDY 狀態(tài),避免頭阻塞現(xiàn)象,也可能使心跳無用(即,如果消費者是在后面的處理消息流的接收緩沖區(qū)中,操作系統(tǒng)將被填滿,堵心跳)為了保證進(jìn)度,所有的網(wǎng)絡(luò) IO 時間上限勢必與配置的心跳間隔相關(guān)聯(lián)。這意味著,你可以從字面上拔掉之間的網(wǎng)絡(luò)連接 nsqd 和消費者,它會檢測并正確處理錯誤。當(dāng)檢測到一個致命錯誤,客戶端連接被強制關(guān)閉。在傳輸中的消息會超時而重新排隊等待傳遞到另一個消費者。最后,錯誤會被記錄并累計到各種內(nèi)部指標(biāo)。
2.6 分布式
因為NSQ沒有在守護(hù)程序之間共享信息,所以它從一開始就是為了分布式操作而生。個別的機(jī)器可以隨便宕機(jī)隨便啟動而不會影響到系統(tǒng)的其余部分,消息發(fā)布者可以在本地發(fā)布,即使面對網(wǎng)絡(luò)分區(qū)。
這種“分布式優(yōu)先”的設(shè)計理念意味著NSQ基本上可以永遠(yuǎn)不斷地擴(kuò)展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享狀態(tài)就是保存在lookup節(jié)點上,甚至它們不需要全局視圖,配置某些nsqd注冊到某些lookup節(jié)點上這是很簡單的配置,唯一關(guān)鍵的地方就是消費者可以通過lookup節(jié)點獲取所有完整的節(jié)點集。清晰的故障事件——NSQ在組件內(nèi)建立了一套明確關(guān)于可能導(dǎo)致故障的的故障權(quán)衡機(jī)制,這對消息傳遞和恢復(fù)都有意義。雖然它們可能不像Kafka系統(tǒng)那樣提供嚴(yán)格的保證級別,但NSQ簡單的操作使故障情況非常明顯。
2.7 no replication
不像其他的隊列組件,NSQ并沒有提供任何形式的復(fù)制和集群,也正是這點讓它能夠如此簡單地運行,但它確實對于一些高保證性高可靠性的消息發(fā)布沒有足夠的保證。我們可以通過降低文件同步的時間來部分避免,只需通過一個標(biāo)志配置,通過EBS支持我們的隊列。但是這樣仍然存在一個消息被發(fā)布后馬上死亡,丟失了有效的寫入的情況。
2.8 沒有嚴(yán)格的順序
雖然Kafka由一個有序的日志構(gòu)成,但NSQ不是。消息可以在任何時間以任何順序進(jìn)入隊列。在我們使用的案例中,這通常沒有關(guān)系,因為所有的數(shù)據(jù)都被加上了時間戳,但它并不適合需要嚴(yán)格順序的情況。
2.9 無數(shù)據(jù)重復(fù)刪除功能
NSQ對于超時系統(tǒng),它使用了心跳檢測機(jī)制去測試消費者是否存活還是死亡。很多原因會導(dǎo)致我們的consumer無法完成心跳檢測,所以在consumer中必須有一個單獨的步驟確保冪等性。
3. 實踐安裝過程
本文將nsq集群具體的安裝過程略去,大家可以自行參考官網(wǎng),比較簡單。這部分介紹下筆者實驗的拓?fù)?,以及nsqadmin的相關(guān)信息。
3.1 拓?fù)浣Y(jié)構(gòu)
topology
實驗采用3臺NSQD服務(wù),2臺LOOKUPD服務(wù)。
采用官方推薦的拓?fù)?,消息發(fā)布的服務(wù)和NSQD在一臺主機(jī)。一共5臺機(jī)器。
NSQ基本沒有配置文件,配置通過命令行指定參數(shù)。
主要命令如下:
LOOKUPD命令
NSQD命令
工具類,消費后存儲到本地文件。
發(fā)布一條消息
3.2 nsqadmin
對Streams的詳細(xì)信息進(jìn)行查看,包括NSQD節(jié)點,具體的channel,隊列中的消息數(shù),連接數(shù)等信息。
nsqadmin
channel
列出所有的NSQD節(jié)點:
nodes
消息的統(tǒng)計:
msgs
lookup主機(jī)的列表:
hosts
4. 總結(jié)
NSQ基本核心就是簡單性,是一個簡單的隊列,這意味著它很容易進(jìn)行故障推理和很容易發(fā)現(xiàn)bug。消費者可以自行處理故障事件而不會影響系統(tǒng)剩下的其余部分。
事實上,簡單性是我們決定使用NSQ的首要因素,這方便與我們的許多其他軟件一起維護(hù),通過引入隊列使我們得到了堪稱完美的表現(xiàn),通過隊列甚至讓我們增加了幾個數(shù)量級的吞吐量。越來越多的consumer需要一套嚴(yán)格可靠性和順序性保障,這已經(jīng)超過了NSQ提供的簡單功能。
結(jié)合我們的業(yè)務(wù)系統(tǒng)來看,對于我們所需要傳輸?shù)陌l(fā)票消息,相對比較敏感,無法容忍某個nsqd宕機(jī),或者磁盤無法使用的情況,該節(jié)點堆積的消息無法找回。這是我們沒有選擇該消息中間件的主要原因。簡單性和可靠性似乎并不能完全滿足。相比Kafka,ops肩負(fù)起更多負(fù)責(zé)的運營。另一方面,它擁有一個可復(fù)制的、有序的日志可以提供給我們更好的服務(wù)。但對于其他適合NSQ的consumer,它為我們服務(wù)的相當(dāng)好,我們期待著繼續(xù)鞏固它的堅實的基礎(chǔ)。
當(dāng)監(jiān)聽者數(shù)量已知時
讓每個worker監(jiān)聽專有的廣播channel,并且從主channel中派發(fā)消息到每一個專有的廣播channel中。
type worker struct {
name string
source chan interface{}
quit chan struct{}
}
func (w *worker) Start() {
w.source = make(chan interface{})
go func() {
for {
select {
智能合約調(diào)用是實現(xiàn)一個 DApp 的關(guān)鍵,一個完整的 DApp 包括前端、后端、智能合約及區(qū)塊 鏈系統(tǒng),智能合約的調(diào)用是連接區(qū)塊鏈與前后端的關(guān)鍵。
我們先來了解一下智能合約調(diào)用的基礎(chǔ)原理。智能合約運行在以太坊節(jié)點的 EVM 中。因此要 想調(diào)用合約必須要訪問某個節(jié)點。
以后端程序為例,后端服務(wù)若想連接節(jié)點有兩種可能,一種是雙 方在同一主機(jī),此時后端連接節(jié)點可以采用 本地 IPC(Inter-Process Communication,進(jìn) 程間通信)機(jī)制,也可以采用 RPC(Remote Procedure Call,遠(yuǎn)程過程調(diào)用)機(jī)制;另 一種情況是雙方不在同一臺主機(jī),此時只能采用 RPC 機(jī)制進(jìn)行通信。
提到 RPC, 讀者應(yīng)該對 Geth 啟動參數(shù)有點印象,Geth 啟動時可以選擇開啟 RPC 服務(wù),對應(yīng)的 默認(rèn)服務(wù)端口是 8545。。
接著,我們來了解一下智能合約運行的過程。
智能合約的運行過程是后端服務(wù)連接某節(jié)點,將 智能合約的調(diào)用(交易)發(fā)送給節(jié)點,節(jié)點在驗證了交易的合法性后進(jìn)行全網(wǎng)廣播,被礦工打包到 區(qū)塊中代表此交易得到確認(rèn),至此交易才算完成。
就像數(shù)據(jù)庫一樣,每個區(qū)塊鏈平臺都會提供主流 開發(fā)語言的 SDK(Software Development Kit,軟件開發(fā)工具包),由于 Geth 本身就是用 Go 語言 編寫的,因此若想使用 Go 語言連接節(jié)點、發(fā)交易,直接在工程內(nèi)導(dǎo)入 go-ethereum(Geth 源碼) 包就可以了,剩下的問題就是流程和 API 的事情了。
總結(jié)一下,智能合約被調(diào)用的兩個關(guān)鍵點是節(jié)點和 SDK。
由于 IPC 要求后端與節(jié)點必須在同一主機(jī),所以很多時候開發(fā)者都會采用 RPC 模式。除了 RPC,以太坊也為開發(fā)者提供了 json- rpc 接口,本文就不展開討論了。
接下來介紹如何使用 Go 語言,借助 go-ethereum 源碼庫來實現(xiàn)智能合約的調(diào)用。這是有固定 步驟的,我們先來說一下總體步驟,以下面的合約為例。
步驟 01:編譯合約,獲取合約 ABI(Application Binary Interface,應(yīng)用二進(jìn)制接口)。 單擊【ABI】按鈕拷貝合約 ABI 信息,將其粘貼到文件 calldemo.abi 中(可使用 Go 語言IDE 創(chuàng)建該文件,文件名可自定義,后綴最好使用 abi)。
最好能將 calldemo.abi 單獨保存在一個目錄下,輸入“l(fā)s”命令只能看到 calldemo.abi 文件,參 考效果如下:
步驟 02:獲得合約地址。注意要將合約部署到 Geth 節(jié)點。因此 Environment 選擇為 Web3 Provider。
在【Environment】選項框中選擇“Web3 Provider”,然后單擊【Deploy】按鈕。
部署后,獲得合約地址為:0xa09209c28AEf59a4653b905792a9a910E78E7407。
步驟 03:利用 abigen 工具(Geth 工具包內(nèi)的可執(zhí)行程序)編譯智能合約為 Go 代碼。abigen 工具的作用是將 abi 文件轉(zhuǎn)換為 Go 代碼,命令如下:
其中各參數(shù)的含義如下。 (1)abi:是指定傳入的 abi 文件。 (2)type:是指定輸出文件中的基本結(jié)構(gòu)類型。 (3)pkg:指定輸出文件 package 名稱。 (4)out:指定輸出文件名。 執(zhí)行后,將在代碼目錄下看到 funcdemo.go 文件,讀者可以打開該文件欣賞一下,注意不要修改它。
步驟 04:創(chuàng)建 main.go,填入如下代碼。 注意代碼中 HexToAddress 函數(shù)內(nèi)要傳入該合約部署后的地址,此地址在步驟 01 中獲得。
步驟 04:設(shè)置 go mod,以便工程自動識別。
前面有所提及,若要使用 Go 語言調(diào)用智能合約,需要下載 go-ethereum 工程,可以使用下面 的指令:
該指令會自動將 go-ethereum 下載到“$GOPATH/src/github.com/ethereum/go-ethereum”,這樣還算 不錯。不過,Go 語言自 1.11 版本后,增加了 module 管理工程的模式。只要設(shè)置好了 go mod,下載 依賴工程的事情就不必關(guān)心了。
接下來設(shè)置 module 生效和 GOPROXY,命令如下:
在項目工程內(nèi),執(zhí)行初始化,calldemo 可以自定義名稱。
步驟 05:運行代碼。執(zhí)行代碼,將看到下面的效果,以及最終輸出的 2020。
上述輸出信息中,可以看到 Go 語言會自動下載依賴文件,這就是 go mod 的神奇之處??吹?2020,相信讀者也知道運行結(jié)果是正確的了。
1、簡單易學(xué)。
Go語言的作者本身就很懂C語言,所以同樣Go語言也會有C語言的基因,所以對于程序員來說,Go語言天生就會讓人很熟悉,容易上手。
2、并發(fā)性好。
Go語言天生支持并發(fā),可以充分利用多核,輕松地使用并發(fā)。 這是Go語言最大的特點。
描述
Go的語法接近C語言,但對于變量的聲明有所不同。Go支持垃圾回收功能。Go的并行模型是以東尼·霍爾的通信順序進(jìn)程(CSP)為基礎(chǔ),采取類似模型的其他語言包括Occam和Limbo,但它也具有Pi運算的特征,比如通道傳輸。
在1.8版本中開放插件(Plugin)的支持,這意味著現(xiàn)在能從Go中動態(tài)加載部分函數(shù)。
與C++相比,Go并不包括如枚舉、異常處理、繼承、泛型、斷言、虛函數(shù)等功能,但增加了 切片(Slice) 型、并發(fā)、管道、垃圾回收、接口(Interface)等特性的語言級支持。
使用簡單的 make 調(diào)用創(chuàng)建的通道叫做無緩沖通道,但 make 還可以接受第二個可選參數(shù),一個表示通道容量的整數(shù)。如果容量是 0,make 創(chuàng)建一個無緩沖通道。
無緩沖通道上的發(fā)送操作將被阻塞,直到另一個 goroutine 在對應(yīng)的通道上執(zhí)行接受操作,這時值傳送完成,兩個 goroutine 都可以繼續(xù)執(zhí)行。相反,如果接受操作先執(zhí)行,接收方 goroutine 將阻塞,直到另一個 goroutine 在同一個通道上發(fā)送一個值。使用無緩沖通道進(jìn)行的通信導(dǎo)致發(fā)送和接受操作 goroutine 同步化。因此,無緩沖通道也稱為同步通道。當(dāng)一個值在無緩沖通道上傳遞時,接受值后發(fā)送方 goroutine 才能被喚醒。
緩沖通道上的發(fā)送操作在隊列的尾部插入一個元素,接收操作從隊列的頭部移除一個元素。如果通道滿了,發(fā)送操作會阻塞所在的 goroutine 直到另一個 goroutine 對它進(jìn)行接收操作來留出可用的空間。反過來,如果通道是空的,執(zhí)行接收操作的 goroutine 阻塞,直到另一個 goroutine 在通道上發(fā)送數(shù)據(jù)。
如果給一個 nil 的 channel 發(fā)送數(shù)據(jù),會造成永遠(yuǎn)阻塞。
如果從一個 nil 的 channel 中接收數(shù)據(jù),也會造成永久阻塞。 給一個已經(jīng)關(guān)閉的 channel 發(fā)送數(shù)據(jù), 會引起 panic。
從一個已經(jīng)關(guān)閉的 channel 接收數(shù)據(jù), 如果緩沖區(qū)中為空,則返回一個 零 值。