[::-1]實(shí)現(xiàn)翻轉(zhuǎn)功能。
成都創(chuàng)新互聯(lián)始終致力于在企業(yè)網(wǎng)站建設(shè)領(lǐng)域發(fā)展。秉承“創(chuàng)新、求實(shí)、誠信、拼搏”的企業(yè)精神,致力為企業(yè)提供全面的網(wǎng)絡(luò)宣傳與技術(shù)應(yīng)用整體策劃方案,為企業(yè)提供包括“網(wǎng)站建設(shè)、成都響應(yīng)式網(wǎng)站建設(shè)、手機(jī)網(wǎng)站建設(shè)、微信網(wǎng)站建設(shè)、小程序設(shè)計(jì)、商城建設(shè)、平臺(tái)網(wǎng)站建設(shè)秉承"和諧、參與、激情"的文化,與客戶和合作伙伴齊心協(xié)力一起成長,共同發(fā)展。
Python 的切片功能實(shí)際上比很多程序員認(rèn)為的更強(qiáng)大。
a = m [ 0 : 100 : 10 ] # 帶步進(jìn)的切片(步進(jìn)值=10)
注意:步進(jìn)值為step
當(dāng)step 0 時(shí)
切片從 start(含start)處開始,到end(不含end)處結(jié)束,**從左往右**,每隔(step-1)(索引之間的差仍為step,但相隔的元素是step-1個(gè))個(gè)元素進(jìn)行一次截取。
這時(shí),start 指向的位置應(yīng)該在end指向的位置的左邊,否則返回值為空
當(dāng)step 0 時(shí)
切片從 start(含start)處開始,到end(不含end)處結(jié)束,**從右往左**,每隔(step-1)(索引之間的差仍為step,但相隔的元素是step-1個(gè))個(gè)元素進(jìn)行一次截取。
這時(shí),start 指向的位置應(yīng)該在end指向的位置的右邊,否則返回值為空
一、使用遞歸的背景
先來看一個(gè)??接口結(jié)構(gòu):
這個(gè)孩子,他是一個(gè)列表,下面有6個(gè)元素
展開children下第一個(gè)元素[0]看看:
發(fā)現(xiàn)[0]除了包含一些字段信息,還包含了 children 這個(gè)字段(喜當(dāng)?shù)瑫r(shí)這個(gè)children下包含了2個(gè)元素:
展開他的第一個(gè)元素,不出所料,也含有children字段(人均有娃)
可以理解為children是個(gè)對(duì)象,他包含了一些屬性,特別的是其中有一個(gè)屬性與父級(jí)children是一模一樣的,他包含父級(jí)children所有的屬性。
比如每個(gè)children都包含了一個(gè)name字段,我們要拿到所有children里name字段的值,這時(shí)候就要用到遞歸啦~
二、find_children.py
拆分理解:
1.首先import requests庫,用它請(qǐng)求并獲取接口返回的數(shù)據(jù)
2.若children以上還有很多層級(jí),可以縮小數(shù)據(jù)范圍,定位到children的上一層級(jí)
3.來看看定義的函數(shù)
我們的函數(shù)調(diào)用:find_children(node_f, 'children')
其中,node_f:json字段
??? children:遞歸對(duì)象
?以下這段是實(shí)現(xiàn)遞歸的核心:
?? if items['children']:
?items['children']不為None,表示該元素下的children字段還有子類數(shù)據(jù)值,此時(shí)滿足if條件,可理解為 if 1。
?items['children']為None,表示該元素下children值為None,沒有后續(xù)可遞歸值,此時(shí)不滿足if條件,可理解為 if 0,不會(huì)再執(zhí)行if下的語句(不會(huì)再遞歸)。
至此,每一層級(jí)中children的name以及下一層級(jí)children的name就都取出來了
希望到這里能幫助大家理解遞歸的思路,以后根據(jù)這個(gè)模板直接套用就行
(晚安啦~)
源碼參考:
程序調(diào)用自身的編程技巧稱為遞歸( recursion)。遞歸做為一種算法在程序設(shè)計(jì)語言中廣泛應(yīng)用。 一個(gè)過程或函數(shù)在其定義或說明中有直接或間接調(diào)用自身的一種方法。
它通常把一個(gè)大型復(fù)雜的問題層層轉(zhuǎn)化為一個(gè)與原問題相似的規(guī)模較小的問題來求解,遞歸策略只需少量的程序就可描述出解題過程所需要的多次重復(fù)計(jì)算,大大地減少了程序的代碼量。
遞歸的能力在于用有限的語句來定義對(duì)象的無限集合。一般來說,遞歸需要有邊界條件、遞歸前進(jìn)段和遞歸返回段。當(dāng)邊界條件不滿足時(shí),遞歸前進(jìn);當(dāng)邊界條件滿足時(shí),遞歸返回。
Python
是完全面向?qū)ο蟮恼Z言。函數(shù)、模塊、數(shù)字、字符串都是對(duì)象。并且完全支持繼承、重載、派生、多繼承,有益于增強(qiáng)源代碼的復(fù)用性。Python支持重載運(yùn)算符和動(dòng)態(tài)類型。相對(duì)于Lisp這種傳統(tǒng)的函數(shù)式編程語言,Python對(duì)函數(shù)式設(shè)計(jì)只提供了有限的支持。有兩個(gè)標(biāo)準(zhǔn)庫(functools, itertools)提供了Haskell和Standard ML中久經(jīng)考驗(yàn)的函數(shù)式程序設(shè)計(jì)工具。
函數(shù)的遞歸調(diào)用
遞歸問題是一個(gè)說簡(jiǎn)單也簡(jiǎn)單,說難也有點(diǎn)難理解的問題.我想非常有必要對(duì)其做一個(gè)總結(jié).
首先理解一下遞歸的定義,遞歸就是直接或間接的調(diào)用自身.而至于什么時(shí)候要用到遞歸,遞歸和非遞歸又有那些區(qū)別?又是一個(gè)不太容易掌握的問題,更難的是對(duì)于遞歸調(diào)用的理解.下面我們就從程序+圖形的角度對(duì)遞歸做一個(gè)全面的闡述.
我們從常見到的遞歸問題開始:
1 階層函數(shù)
#include iostream
using namespace std;
int factorial(int n)
{
if (n == 0)
{
return 1;
}
else
{
int result = factorial(n-1);
return n * result;
}
}
int main()
{
int x = factorial(3);
cout x endl;
return 0;
}
這是一個(gè)遞歸求階層函數(shù)的實(shí)現(xiàn)。很多朋友只是知道該這么實(shí)現(xiàn)的,也清楚它是通過不斷的遞歸調(diào)用求出的結(jié)果.但他們有些不清楚中間發(fā)生了些什么.下面我們用圖對(duì)此做一個(gè)清楚的流程:
根據(jù)上面這個(gè)圖,大家可以很清楚的看出來這個(gè)函數(shù)的執(zhí)行流程。我們的階層函數(shù)factorial被調(diào)用了4次.并且我們可以看出在調(diào)用后面的調(diào)用中,前面的調(diào)用并不退出。他們同時(shí)存在內(nèi)存中??梢娺@是一件很浪費(fèi)資源的事情。我們?cè)摯蔚膮?shù)是3.如果我們傳遞10000呢。那結(jié)果就可想而知了.肯定是溢出了.就用int型來接收結(jié)果別說10000,100就會(huì)產(chǎn)生溢出.即使不溢出我想那肯定也是見很浪費(fèi)資源的事情.我們可以做一個(gè)粗略的估計(jì):每次函數(shù)調(diào)用就單變量所需的內(nèi)存為:兩個(gè)int型變量.n和result.在32位機(jī)器上占8B.那么10000就需要10001次函數(shù)調(diào)用.共需10001*8/1024 = 78KB.這只是變量所需的內(nèi)存空間.其它的函數(shù)調(diào)用時(shí)函數(shù)入口地址等仍也需要占用內(nèi)存空間??梢娺f歸調(diào)用產(chǎn)生了一個(gè)不小的開銷.
2 斐波那契數(shù)列
int Fib(int n)
{
if (n = 1)
{
return n;
}
else
{
return Fib(n-1) + Fib(n-2);
}
}
這個(gè)函數(shù)遞歸與上面的那個(gè)有些不同.每次調(diào)用函數(shù)都會(huì)引起另外兩次的調(diào)用.最后將結(jié)果逐級(jí)返回.
我們可以看出這個(gè)遞歸函數(shù)同樣在調(diào)用后買的函數(shù)時(shí),前面的不退出而是在等待后面的結(jié)果,最后求出總結(jié)果。這就是遞歸.
3
#include iostream
using namespace std;
void recursiveFunction1(int num)
{
if (num 5)
{
cout num endl;
recursiveFunction1(num+1);
}
}
void recursiveFunction2(int num)
{
if (num 5)
{
recursiveFunction2(num+1);
cout num endl;
}
}
int main()
{
recursiveFunction1(0);
recursiveFunction2(0);
return 0;
}
運(yùn)行結(jié)果:
1
2
3
4
4
3
2
1
該程序中有兩個(gè)遞歸函數(shù)。傳遞同樣的參數(shù),但他們的輸出結(jié)果剛好相反。理解這兩個(gè)函數(shù)的調(diào)用過程可以很好的幫助我們理解遞歸:
我想能夠把上面三個(gè)函數(shù)的遞歸調(diào)用過程理解了,你已經(jīng)把遞歸調(diào)用理解的差不多了.并且從上面的遞歸調(diào)用中我們可以總結(jié)出遞歸的一個(gè)規(guī)律:他是逐級(jí)的調(diào)用,而在函數(shù)結(jié)束的時(shí)候是從最后面往前反序的結(jié)束.這種方式是很占用資源,也很費(fèi)時(shí)的。但是有的時(shí)候使用遞歸寫出來的程序很容易理解,很易讀.
為什么使用遞歸:
1 有時(shí)候使用遞歸寫出來的程序很容易理解,很易讀.
2 有些問題只有遞歸能夠解決.非遞歸的方法無法實(shí)現(xiàn).如:漢諾塔.
遞歸的條件:
并不是說所有的問題都可以使用遞歸解決,他必須的滿足一定的條件。即有一個(gè)出口點(diǎn).也就是說當(dāng)滿足一定條件時(shí),程序可以結(jié)束,從而完成遞歸調(diào)用,否則就陷入了無限的遞歸調(diào)用之中了.并且這個(gè)條件還要是可達(dá)到的.
遞歸有哪些優(yōu)點(diǎn):
易讀,容易理解,代碼一般比較短.
遞歸有哪些缺點(diǎn):
占用內(nèi)存資源多,費(fèi)時(shí),效率低下.
因此在我們寫程序的時(shí)候不要輕易的使用遞歸,雖然他有他的優(yōu)點(diǎn),但是我們要在易讀性和空間,效率上多做權(quán)衡.一般情況下我們還是使用非遞歸的方法解決問題.若一個(gè)算法非遞歸解法非常難于理解。我們使用遞歸也未嘗不可.如:二叉樹的遍歷算法.非遞歸的算法很難與理解.而相比遞歸算法就容易理解很多.
對(duì)于遞歸調(diào)用的問題,我們?cè)谇耙欢螘r(shí)間寫圖形學(xué)程序時(shí),其中有一個(gè)四連同填充算法就是使用遞歸的方法。結(jié)果當(dāng)要填充的圖形稍微大一些時(shí),程序就自動(dòng)關(guān)閉了.這不是一個(gè)人的問題,所有人寫出來的都是這個(gè)問題.當(dāng)時(shí)我們給與的解釋就是堆棧溢出。就多次遞歸調(diào)用占用太多的內(nèi)存資源致使堆棧溢出,程序沒有內(nèi)存資源執(zhí)行下去,從而被操作系統(tǒng)強(qiáng)制關(guān)閉了.這是一個(gè)真真切切的例子。所以我們?cè)谑褂眠f歸的時(shí)候需要權(quán)衡再三.
def Sum(m): #函數(shù)返回兩個(gè)值:遞歸次數(shù),所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5
所謂基例就是不需要遞歸就能求解的,一般來說是問題的最小規(guī)模下的解。
例如:斐波那契數(shù)列遞歸,f(n)
=
f(n-1)
+
f(n-2),基例是1和2,f(1)和f(2)結(jié)果都是1
再比如:漢諾塔遞歸,基例就是1個(gè)盤子的情況,只需移動(dòng)一次,無需遞歸
遞歸必須有基例,否則就是無法退出的遞歸,不能求解。