真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python線性分段函數(shù) 分段函數(shù)python編程

用Python 求f(x)的分段函數(shù),為什么不能用f(x)

了解下什么是函數(shù)哈

創(chuàng)新互聯(lián)作為成都網(wǎng)站建設(shè)公司,專注重慶網(wǎng)站建設(shè)公司、網(wǎng)站設(shè)計(jì),有關(guān)企業(yè)網(wǎng)站制作方案、改版、費(fèi)用等問題,行業(yè)涉及成都廣告設(shè)計(jì)等多個(gè)領(lǐng)域,已為上千家企業(yè)服務(wù),得到了客戶的尊重與認(rèn)可。

你可以直接寫

def f(x):

if x 5:

return x

if 1 x = 5:

return x + 1

if -3 x = 1:

return 0.5 * x + 1

return x - 1

# 以下為輸入和調(diào)用

x = int(inpit())

res = f(x)

print(res)

python 如何繪制線性函數(shù)圖?

import matplotlib.pyplot as plt

plt.scatter(xdata,ydata)

(xdata,ydata為兩個(gè)需要作圖的數(shù)據(jù)集)

原來ReLU這么好用!一文帶你深度了解ReLU激活函數(shù)!

在神經(jīng)網(wǎng)絡(luò)中,激活函數(shù)負(fù)責(zé)將來自節(jié)點(diǎn)的加權(quán)輸入轉(zhuǎn)換為該輸入的節(jié)點(diǎn)或輸出的激活。ReLU 是一個(gè)分段線性函數(shù),如果輸入為正,它將直接輸出,否則,它將輸出為零。它已經(jīng)成為許多類型神經(jīng)網(wǎng)絡(luò)的默認(rèn)激活函數(shù),因?yàn)槭褂盟哪P透菀子?xùn)練,并且通常能夠獲得更好的性能。在本文中,我們來詳細(xì)介紹一下ReLU,主要分成以下幾個(gè)部分:

1、Sigmoid 和 Tanh 激活函數(shù)的局限性

2、ReLU(Rectified Linear Activation Function)

3、如何實(shí)現(xiàn)ReLU

4、ReLU的優(yōu)點(diǎn)

5、使用ReLU的技巧

一個(gè)神經(jīng)網(wǎng)絡(luò)由層節(jié)點(diǎn)組成,并學(xué)習(xí)將輸入的樣本映射到輸出。對(duì)于給定的節(jié)點(diǎn),將輸入乘以節(jié)點(diǎn)中的權(quán)重,并將其相加。此值稱為節(jié)點(diǎn)的summed activation。然后,經(jīng)過求和的激活通過一個(gè)激活函數(shù)轉(zhuǎn)換并定義特定的輸出或節(jié)點(diǎn)的“activation”。

最簡(jiǎn)單的激活函數(shù)被稱為線性激活,其中根本沒有應(yīng)用任何轉(zhuǎn)換。 一個(gè)僅由線性激活函數(shù)組成的網(wǎng)絡(luò)很容易訓(xùn)練,但不能學(xué)習(xí)復(fù)雜的映射函數(shù)。線性激活函數(shù)仍然用于預(yù)測(cè)一個(gè)數(shù)量的網(wǎng)絡(luò)的輸出層(例如回歸問題)。

非線性激活函數(shù)是更好的,因?yàn)樗鼈冊(cè)试S節(jié)點(diǎn)在數(shù)據(jù)中學(xué)習(xí)更復(fù)雜的結(jié)構(gòu) 。兩個(gè)廣泛使用的非線性激活函數(shù)是 sigmoid 函數(shù)和 雙曲正切 激活函數(shù)。

Sigmoid 激活函數(shù) ,也被稱為 Logistic函數(shù)神經(jīng)網(wǎng)絡(luò),傳統(tǒng)上是一個(gè)非常受歡迎的神經(jīng)網(wǎng)絡(luò)激活函數(shù)。函數(shù)的輸入被轉(zhuǎn)換成介于0.0和1.0之間的值。大于1.0的輸入被轉(zhuǎn)換為值1.0,同樣,小于0.0的值被折斷為0.0。所有可能的輸入函數(shù)的形狀都是從0到0.5到1.0的 s 形。在很長(zhǎng)一段時(shí)間里,直到20世紀(jì)90年代早期,這是神經(jīng)網(wǎng)絡(luò)的默認(rèn)激活方式。

雙曲正切函數(shù) ,簡(jiǎn)稱 tanh,是一個(gè)形狀類似的非線性激活函數(shù),輸出值介于-1.0和1.0之間。在20世紀(jì)90年代后期和21世紀(jì)初期,由于使用 tanh 函數(shù)的模型更容易訓(xùn)練,而且往往具有更好的預(yù)測(cè)性能,因此 tanh 函數(shù)比 Sigmoid激活函數(shù)更受青睞。

Sigmoid和 tanh 函數(shù)的一個(gè)普遍問題是它們值域飽和了 。這意味著,大值突然變?yōu)?.0,小值突然變?yōu)?-1或0。此外,函數(shù)只對(duì)其輸入中間點(diǎn)周圍的變化非常敏感。

無論作為輸入的節(jié)點(diǎn)所提供的求和激活是否包含有用信息,函數(shù)的靈敏度和飽和度都是有限的。一旦達(dá)到飽和狀態(tài),學(xué)習(xí)算法就需要不斷調(diào)整權(quán)值以提高模型的性能。

最后,隨著硬件能力的提高,通過 gpu 的非常深的神經(jīng)網(wǎng)絡(luò)使用Sigmoid 和 tanh 激活函數(shù)不容易訓(xùn)練。在大型網(wǎng)絡(luò)深層使用這些非線性激活函數(shù)不能接收有用的梯度信息。錯(cuò)誤通過網(wǎng)絡(luò)傳播回來,并用于更新權(quán)重。每增加一層,錯(cuò)誤數(shù)量就會(huì)大大減少。這就是所謂的 消失梯度 問題,它能有效地阻止深層(多層)網(wǎng)絡(luò)的學(xué)習(xí)。

雖然非線性激活函數(shù)的使用允許神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)復(fù)雜的映射函數(shù),但它們有效地阻止了學(xué)習(xí)算法與深度網(wǎng)絡(luò)的工作。在2000年代后期和2010年代初期,通過使用諸如波爾茲曼機(jī)器和分層訓(xùn)練或無監(jiān)督的預(yù)訓(xùn)練等替代網(wǎng)絡(luò)類型,這才找到了解決辦法。

為了訓(xùn)練深層神經(jīng)網(wǎng)絡(luò), 需要一個(gè)激活函數(shù)神經(jīng)網(wǎng)絡(luò),它看起來和行為都像一個(gè)線性函數(shù),但實(shí)際上是一個(gè)非線性函數(shù),允許學(xué)習(xí)數(shù)據(jù)中的復(fù)雜關(guān)系 。該函數(shù)還必須提供更靈敏的激活和輸入,避免飽和。

因此,ReLU出現(xiàn)了, 采用 ReLU 可以是深度學(xué)習(xí)革命中為數(shù)不多的里程碑之一 。ReLU激活函數(shù)是一個(gè)簡(jiǎn)單的計(jì)算,如果輸入大于0,直接返回作為輸入提供的值;如果輸入是0或更小,返回值0。

我們可以用一個(gè)簡(jiǎn)單的 if-statement 來描述這個(gè)問題,如下所示:

對(duì)于大于零的值,這個(gè)函數(shù)是線性的,這意味著當(dāng)使用反向傳播訓(xùn)練神經(jīng)網(wǎng)絡(luò)時(shí),它具有很多線性激活函數(shù)的理想特性。然而,它是一個(gè)非線性函數(shù),因?yàn)樨?fù)值總是作為零輸出。由于矯正函數(shù)在輸入域的一半是線性的,另一半是非線性的,所以它被稱為 分段線性函數(shù)(piecewise linear function ) 。

我們可以很容易地在 Python 中實(shí)現(xiàn)ReLU激活函數(shù)。

我們希望任何正值都能不變地返回,而0.0或負(fù)值的輸入值將作為0.0返回。

下面是一些修正的線性激活函數(shù)的輸入和輸出的例子:

輸出如下:

我們可以通過繪制一系列的輸入和計(jì)算出的輸出,得到函數(shù)的輸入和輸出之間的關(guān)系。下面的示例生成一系列從 -10到10的整數(shù),并計(jì)算每個(gè)輸入的校正線性激活,然后繪制結(jié)果。

運(yùn)行這個(gè)例子會(huì)創(chuàng)建一個(gè)圖,顯示所有負(fù)值和零輸入都突變?yōu)?.0,而正輸出則返回原樣:

ReLU函數(shù)的導(dǎo)數(shù)是斜率。負(fù)值的斜率為0.0,正值的斜率為1.0。

傳統(tǒng)上,神經(jīng)網(wǎng)絡(luò)領(lǐng)域已經(jīng)不能是任何不完全可微的激活函數(shù),而ReLU是一個(gè)分段函數(shù)。從技術(shù)上講,當(dāng)輸入為0.0時(shí),我們不能計(jì)算ReLU的導(dǎo)數(shù),但是,我們可以假設(shè)它為0。

tanh 和 sigmoid 激活函數(shù)需要使用指數(shù)計(jì)算, 而ReLU只需要max(),因此他 計(jì)算上更簡(jiǎn)單,計(jì)算成本也更低 。

ReLU的一個(gè)重要好處是,它能夠輸出一個(gè)真正的零值 。這與 tanh 和 sigmoid 激活函數(shù)不同,后者學(xué)習(xí)近似于零輸出,例如一個(gè)非常接近于零的值,但不是真正的零值。這意味著負(fù)輸入可以輸出真零值,允許神經(jīng)網(wǎng)絡(luò)中的隱層激活包含一個(gè)或多個(gè)真零值。這就是所謂的稀疏表示,是一個(gè)理想的性質(zhì),在表示學(xué)習(xí),因?yàn)樗梢约铀賹W(xué)習(xí)和簡(jiǎn)化模型。

ReLU看起來更像一個(gè)線性函數(shù),一般來說,當(dāng)神經(jīng)網(wǎng)絡(luò)的行為是線性或接近線性時(shí),它更容易優(yōu)化 。

這個(gè)特性的關(guān)鍵在于,使用這個(gè)激活函數(shù)進(jìn)行訓(xùn)練的網(wǎng)絡(luò)幾乎完全避免了梯度消失的問題,因?yàn)樘荻热匀慌c節(jié)點(diǎn)激活成正比。

ReLU的出現(xiàn)使得利用硬件的提升和使用反向傳播成功訓(xùn)練具有非線性激活函數(shù)的深層多層網(wǎng)絡(luò)成為可能 。

很長(zhǎng)一段時(shí)間,默認(rèn)的激活方式是Sigmoid激活函數(shù)。后來,Tanh成了激活函數(shù)。 對(duì)于現(xiàn)代的深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),默認(rèn)的激活函數(shù)是ReLU激活函數(shù) 。

ReLU 可以用于大多數(shù)類型的神經(jīng)網(wǎng)絡(luò), 它通常作為多層感知機(jī)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的激活函數(shù) ,并且也得到了許多論文的證實(shí)。傳統(tǒng)上,LSTMs 使用 tanh 激活函數(shù)來激活cell狀態(tài),使用 Sigmoid激活函數(shù)作為node輸出。 而ReLU通常不適合RNN類型網(wǎng)絡(luò)的使用。

偏置是節(jié)點(diǎn)上具有固定值的輸入,這種偏置會(huì)影響激活函數(shù)的偏移,傳統(tǒng)的做法是將偏置輸入值設(shè)置為1.0。當(dāng)在網(wǎng)絡(luò)中使用 ReLU 時(shí), 可以將偏差設(shè)置為一個(gè)小值,例如0.1 。

在訓(xùn)練神經(jīng)網(wǎng)絡(luò)之前,網(wǎng)絡(luò)的權(quán)值必須初始化為小的隨機(jī)值。當(dāng)在網(wǎng)絡(luò)中使用 ReLU 并將權(quán)重初始化為以零為中心的小型隨機(jī)值時(shí),默認(rèn)情況下,網(wǎng)絡(luò)中一半的單元將輸出零值。有許多啟發(fā)式方法來初始化神經(jīng)網(wǎng)絡(luò)的權(quán)值,但是沒有最佳權(quán)值初始化方案。 何愷明的文章指出Xavier 初始化和其他方案不適合于 ReLU ,對(duì) Xavier 初始化進(jìn)行一個(gè)小的修改,使其適合于 ReLU,提出He Weight Initialization,這個(gè)方法更適用于ReLU 。

在使用神經(jīng)網(wǎng)絡(luò)之前對(duì)輸入數(shù)據(jù)進(jìn)行縮放是一個(gè)很好的做法。這可能涉及標(biāo)準(zhǔn)化變量,使其具有零均值和單位方差,或者將每個(gè)值歸一化為0到1。如果不對(duì)許多問題進(jìn)行數(shù)據(jù)縮放,神經(jīng)網(wǎng)絡(luò)的權(quán)重可能會(huì)增大,從而使網(wǎng)絡(luò)不穩(wěn)定并增加泛化誤差。 無論是否在網(wǎng)絡(luò)中使用 ReLU,這種縮放輸入的良好實(shí)踐都適用。

ReLU 的輸出在正域上是無界的。這意味著在某些情況下,輸出可以繼續(xù)增長(zhǎng)。因此,使用某種形式的權(quán)重正則化可能是一個(gè)比較好的方法,比如 l1或 l2向量范數(shù)。 這對(duì)于提高模型的稀疏表示(例如使用 l 1正則化)和降低泛化誤差都是一個(gè)很好的方法 。

.

python兩個(gè)變量的分段函數(shù)怎么打出來

jumpython分段函在python中可以進(jìn)行不同函數(shù)的驗(yàn)算應(yīng)用,同學(xué)們只需要好好地了解學(xué)習(xí),就能夠非常熟練的應(yīng)用python中的各種功能。那今天讓我們來看一看python如何去做一個(gè)分段函數(shù)呢?1.首先同學(xué)們需要打開python,想好去做分段函數(shù)的第一步,就是需要打開一個(gè)空白的編輯器,打開了空白的編輯器,同學(xué)們才能夠更好地去進(jìn)行操作。⒉.然后在空白的編輯器文件上編寫程序,以x為未知數(shù),進(jìn)行各種操作之后,記得一定要方便計(jì)算平方和開方,在最后也要寫好表達(dá)式,同學(xué)們一定要記錄好結(jié)果。這樣分段函數(shù)的程序就做好了,同學(xué)們可以利用這個(gè)程序進(jìn)行簡(jiǎn)單的計(jì)算。3.之后同學(xué)們可以再打開這個(gè)程序,輸入一些數(shù)字,最后在下面可以看到最終的結(jié)果??吹狡渲械倪^程就是分段函數(shù)計(jì)算的過程。在進(jìn)行的過程中,只要操作沒有問題,那么結(jié)果和過程就是沒有問題的。本題目要求根據(jù)以下分段函數(shù)的定義,計(jì)算輸入的x對(duì)應(yīng)的y值,輸出結(jié)果保留兩位小數(shù);如果輸入的x是非數(shù)值型數(shù)據(jù),輸出'Input Error'。注意:使用math庫輸入格式:在一行中輸入x的值。輸出格式:按“f(x) = result”的格式輸出,其中x與result都保留兩位小數(shù),注意'='兩邊有空格。如果輸入的x是非數(shù)值型數(shù)據(jù),輸出:Input Error執(zhí)行代碼如下:try:import mathx=eval(input())if x0:print("f({:.2f}) = {:.2f}".format(x,math.log(x)+x**0.5))elif x=0:print("f(-{:.2f}) = 0.00".format(abs(x)))except NameError :print("Input Error")

5.9

百度文庫VIP限時(shí)優(yōu)惠現(xiàn)在開通,立享6億+VIP內(nèi)容

立即獲取

jumpython分段函

數(shù)據(jù)空間Datespace

jumpython分段函

在python中可以進(jìn)行不同函數(shù)的驗(yàn)算應(yīng)用,同學(xué)們只需要好好地了解學(xué)習(xí),就能夠非常熟練的應(yīng)用python中的各種功能。那今天讓我們來看一看python如何去做一個(gè)分段函數(shù)呢?

1.首先同學(xué)們需要打開python,想好去做分段函數(shù)的第一步,就是需要打開一個(gè)空白的編輯器,打開了空白的編輯器,同學(xué)們才能夠更好地去進(jìn)行操作。

⒉.然后在空白的編輯器文件上編寫程序,以x為未知數(shù),進(jìn)行各種操作之后,記得一定要方便計(jì)算平方和開方,在最后也要寫好表達(dá)式,同學(xué)們一定要記錄好結(jié)果。這樣分段函數(shù)的程序就做好了,同學(xué)們可以利用這個(gè)程序進(jìn)行簡(jiǎn)單的計(jì)算。

第 1 頁

3.之后同學(xué)們可以再打開這個(gè)程序,輸入一些數(shù)字,最后在下面可以看到最終的結(jié)果??吹狡渲械倪^程就是分段函數(shù)計(jì)算的過程。在進(jìn)行的過程中,只要操作沒有問題,那么結(jié)果和過程就是沒有問題的。

本題目要求根據(jù)以下分段函數(shù)的定義,計(jì)算輸入的x對(duì)應(yīng)的y值,輸出結(jié)果保留兩位小數(shù);如果輸入的x是非數(shù)值型數(shù)據(jù),輸出'Input Error'。注意:使用math庫

輸入格式:

python3.8.5shell怎么分段函數(shù)運(yùn)算

這里的最好的分段輸入的運(yùn)算可以通過計(jì)算模式來完成虛擬手段

python編程這個(gè)怎么弄?

分段函數(shù)的代碼用python實(shí)現(xiàn)如下:

x=eval(input('輸入x的值:'))

if x!=0:

y=1/(2*x-1)

else:

y=0

print(y)


當(dāng)前文章:python線性分段函數(shù) 分段函數(shù)python編程
文章路徑:http://weahome.cn/article/hgjgci.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部