函數(shù)的遞歸調(diào)用
成都創(chuàng)新互聯(lián)是一家專注于成都做網(wǎng)站、成都網(wǎng)站設(shè)計(jì)與策劃設(shè)計(jì),容城網(wǎng)站建設(shè)哪家好?成都創(chuàng)新互聯(lián)做網(wǎng)站,專注于網(wǎng)站建設(shè)十年,網(wǎng)設(shè)計(jì)領(lǐng)域的專業(yè)建站公司;建站業(yè)務(wù)涵蓋:容城等地區(qū)。容城做網(wǎng)站價(jià)格咨詢:18980820575
遞歸問題是一個(gè)說簡單也簡單,說難也有點(diǎn)難理解的問題.我想非常有必要對(duì)其做一個(gè)總結(jié).
首先理解一下遞歸的定義,遞歸就是直接或間接的調(diào)用自身.而至于什么時(shí)候要用到遞歸,遞歸和非遞歸又有那些區(qū)別?又是一個(gè)不太容易掌握的問題,更難的是對(duì)于遞歸調(diào)用的理解.下面我們就從程序+圖形的角度對(duì)遞歸做一個(gè)全面的闡述.
我們從常見到的遞歸問題開始:
1 階層函數(shù)
#include iostream
using namespace std;
int factorial(int n)
{
if (n == 0)
{
return 1;
}
else
{
int result = factorial(n-1);
return n * result;
}
}
int main()
{
int x = factorial(3);
cout x endl;
return 0;
}
這是一個(gè)遞歸求階層函數(shù)的實(shí)現(xiàn)。很多朋友只是知道該這么實(shí)現(xiàn)的,也清楚它是通過不斷的遞歸調(diào)用求出的結(jié)果.但他們有些不清楚中間發(fā)生了些什么.下面我們用圖對(duì)此做一個(gè)清楚的流程:
根據(jù)上面這個(gè)圖,大家可以很清楚的看出來這個(gè)函數(shù)的執(zhí)行流程。我們的階層函數(shù)factorial被調(diào)用了4次.并且我們可以看出在調(diào)用后面的調(diào)用中,前面的調(diào)用并不退出。他們同時(shí)存在內(nèi)存中。可見這是一件很浪費(fèi)資源的事情。我們?cè)摯蔚膮?shù)是3.如果我們傳遞10000呢。那結(jié)果就可想而知了.肯定是溢出了.就用int型來接收結(jié)果別說10000,100就會(huì)產(chǎn)生溢出.即使不溢出我想那肯定也是見很浪費(fèi)資源的事情.我們可以做一個(gè)粗略的估計(jì):每次函數(shù)調(diào)用就單變量所需的內(nèi)存為:兩個(gè)int型變量.n和result.在32位機(jī)器上占8B.那么10000就需要10001次函數(shù)調(diào)用.共需10001*8/1024 = 78KB.這只是變量所需的內(nèi)存空間.其它的函數(shù)調(diào)用時(shí)函數(shù)入口地址等仍也需要占用內(nèi)存空間??梢娺f歸調(diào)用產(chǎn)生了一個(gè)不小的開銷.
2 斐波那契數(shù)列
int Fib(int n)
{
if (n = 1)
{
return n;
}
else
{
return Fib(n-1) + Fib(n-2);
}
}
這個(gè)函數(shù)遞歸與上面的那個(gè)有些不同.每次調(diào)用函數(shù)都會(huì)引起另外兩次的調(diào)用.最后將結(jié)果逐級(jí)返回.
我們可以看出這個(gè)遞歸函數(shù)同樣在調(diào)用后買的函數(shù)時(shí),前面的不退出而是在等待后面的結(jié)果,最后求出總結(jié)果。這就是遞歸.
3
#include iostream
using namespace std;
void recursiveFunction1(int num)
{
if (num 5)
{
cout num endl;
recursiveFunction1(num+1);
}
}
void recursiveFunction2(int num)
{
if (num 5)
{
recursiveFunction2(num+1);
cout num endl;
}
}
int main()
{
recursiveFunction1(0);
recursiveFunction2(0);
return 0;
}
運(yùn)行結(jié)果:
1
2
3
4
4
3
2
1
該程序中有兩個(gè)遞歸函數(shù)。傳遞同樣的參數(shù),但他們的輸出結(jié)果剛好相反。理解這兩個(gè)函數(shù)的調(diào)用過程可以很好的幫助我們理解遞歸:
我想能夠把上面三個(gè)函數(shù)的遞歸調(diào)用過程理解了,你已經(jīng)把遞歸調(diào)用理解的差不多了.并且從上面的遞歸調(diào)用中我們可以總結(jié)出遞歸的一個(gè)規(guī)律:他是逐級(jí)的調(diào)用,而在函數(shù)結(jié)束的時(shí)候是從最后面往前反序的結(jié)束.這種方式是很占用資源,也很費(fèi)時(shí)的。但是有的時(shí)候使用遞歸寫出來的程序很容易理解,很易讀.
為什么使用遞歸:
1 有時(shí)候使用遞歸寫出來的程序很容易理解,很易讀.
2 有些問題只有遞歸能夠解決.非遞歸的方法無法實(shí)現(xiàn).如:漢諾塔.
遞歸的條件:
并不是說所有的問題都可以使用遞歸解決,他必須的滿足一定的條件。即有一個(gè)出口點(diǎn).也就是說當(dāng)滿足一定條件時(shí),程序可以結(jié)束,從而完成遞歸調(diào)用,否則就陷入了無限的遞歸調(diào)用之中了.并且這個(gè)條件還要是可達(dá)到的.
遞歸有哪些優(yōu)點(diǎn):
易讀,容易理解,代碼一般比較短.
遞歸有哪些缺點(diǎn):
占用內(nèi)存資源多,費(fèi)時(shí),效率低下.
因此在我們寫程序的時(shí)候不要輕易的使用遞歸,雖然他有他的優(yōu)點(diǎn),但是我們要在易讀性和空間,效率上多做權(quán)衡.一般情況下我們還是使用非遞歸的方法解決問題.若一個(gè)算法非遞歸解法非常難于理解。我們使用遞歸也未嘗不可.如:二叉樹的遍歷算法.非遞歸的算法很難與理解.而相比遞歸算法就容易理解很多.
對(duì)于遞歸調(diào)用的問題,我們?cè)谇耙欢螘r(shí)間寫圖形學(xué)程序時(shí),其中有一個(gè)四連同填充算法就是使用遞歸的方法。結(jié)果當(dāng)要填充的圖形稍微大一些時(shí),程序就自動(dòng)關(guān)閉了.這不是一個(gè)人的問題,所有人寫出來的都是這個(gè)問題.當(dāng)時(shí)我們給與的解釋就是堆棧溢出。就多次遞歸調(diào)用占用太多的內(nèi)存資源致使堆棧溢出,程序沒有內(nèi)存資源執(zhí)行下去,從而被操作系統(tǒng)強(qiáng)制關(guān)閉了.這是一個(gè)真真切切的例子。所以我們?cè)谑褂眠f歸的時(shí)候需要權(quán)衡再三.
def factorial(n):
if n0:
return '負(fù)數(shù)不可以階乘'
if n==1 or n==0:
return 1
return n*factorial(n-1)
print(factorial(10))
函數(shù)體里 調(diào)用 函數(shù)本身 就行
只要獲得所有點(diǎn)即可,x1為x軸起點(diǎn),x2為x軸終點(diǎn),gao為縱軸長度,i為切分次數(shù).
x1=0
x2=10
gao=8
f(0,gao,x1,x2)
f(i=0,gao,x1,x2){
if(i==3){
return
}
t=(double)(x1+x2)
t=t/2
print?(t,gao/2);
f(i+1,gao/2,x1,t);
f(i+1,gao/2,t,x2);
}
import random
import turtle
def random_color():
rgbl=[255,0,0]
random.shuffle(rgbl)
return tuple(rgbl)
def koch(size,n):
if n==0:
? turtle.fd(size)
else:
? for angle in [0,60,-120,60]:
? ? ? cc = random_color()
? ? ? turtle.pencolor(cc[0], cc[1], cc[2])
? ? ? turtle.left(angle)
? ? ? koch(size/3,n-1)
def main():
turtle.colormode(255)
turtle.setup(600,600)
turtle.penup()
turtle.goto(-200,100)
turtle.pendown()
turtle.pensize(2)
level=4? ?#4階科赫雪花,階數(shù)
koch(400,level)
turtle.right(120)
koch(400,level)
turtle.right(120)
koch(400,level)
turtle.hideturtle()
turtle.done()
main()
效果如圖: