為了提高代碼的可讀性,推薦都是多以函數(shù)實(shí)現(xiàn)功能。函數(shù)本身需要傳入返回數(shù)據(jù),那么aes加密函數(shù)就會把傳入的數(shù)據(jù)加密,然后通過返回值返回到變量里面。我們假設(shè)aes函數(shù)名字叫aes,那么我們就這樣調(diào)用:需要加密的數(shù)據(jù)是a。加密結(jié)果是result
創(chuàng)新互聯(lián)長期為超過千家客戶提供的網(wǎng)站建設(shè)服務(wù),團(tuán)隊(duì)從業(yè)經(jīng)驗(yàn)10年,關(guān)注不同地域、不同群體,并針對不同對象提供差異化的產(chǎn)品和服務(wù);打造開放共贏平臺,與合作伙伴共同營造健康的互聯(lián)網(wǎng)生態(tài)環(huán)境。為臨滄企業(yè)提供專業(yè)的成都網(wǎng)站設(shè)計、成都網(wǎng)站制作,臨滄網(wǎng)站改版等技術(shù)服務(wù)。擁有十載豐富建站經(jīng)驗(yàn)和眾多成功案例,為您定制開發(fā)。
int a = 000;
String result = aes(a);
result便是加密后的a
實(shí)際代碼會很復(fù)雜但是結(jié)構(gòu)是這樣的。
1 AES加密、解密算法原理和AVR實(shí)現(xiàn)
AES是分組密鑰,算法輸入128位數(shù)據(jù),密鑰長度也是128位。用Nr表示對一個數(shù)據(jù)分組加密的輪數(shù)(加密輪數(shù)與密鑰長度的關(guān)系如表1所列)。每一輪都需要一個與輸入分組具有相同長度的擴(kuò)展密鑰Expandedkey(i)的參與。由于外部輸入的加密密鑰K長度有限,所以在算法中要用一個密鑰擴(kuò)展程序(Keyexpansion)把外部密鑰K擴(kuò)展成更長的比特串,以生成各輪的加密和解密密鑰。
1.1圈變化
AES每一個圈變換由以下三個層組成:
非線性層——進(jìn)行Subbyte變換;
線行混合層——進(jìn)行ShiftRow和MixColumn運(yùn)算;
密鑰加層——進(jìn)行AddRoundKey運(yùn)算。
① Subbyte變換是作用在狀態(tài)中每個字節(jié)上的一種非線性字節(jié)轉(zhuǎn)換,可以通過計算出來的S盒進(jìn)行映射。
Schange:
ldi zh,$01;將指針指向S盒的首地址
mov zl,r2;將要查找的數(shù)據(jù)作為指針低地址
ldtemp,z+;取出這個對應(yīng)的數(shù)據(jù)
mov r2,temp;交換數(shù)據(jù)完成查表
.
.
.
ret
② ShiftRow是一個字節(jié)換位。它將狀態(tài)中的行按照不同的偏移量進(jìn)行循環(huán)移位,而這個偏移量也是根據(jù)Nb的不同而選擇的[3]。
shiftrow:;這是一個字節(jié)換位的子程序
mov temp,r3;因?yàn)槭?×4
mov r3,r7; r2 r6 r10 r14 r2 r6 r10 r14
mov r7,r11; r3 r7 r11 r15---r7 r11 r15 r3
mov r11,r15; r4 r8 r12 r17 r12 r17 r4 r8
mov r15,temp; r5 r9 r13 r18 r18 r5 r9 r13
mov temp,r4
mov temp1,r8
mov r4,r12
mov r8,r17
mov r12,temp
mov r17,temp1
mov temp,r18
mov r18,r13
mov r13,r9
mov r9,r5
mov r5,temp
ret
③ 在MixColumn變換中,把狀態(tài)中的每一列看作GF(28)上的多項(xiàng)式a(x)與固定多項(xiàng)式c(x)相乘的結(jié)果。b(x)=c(x)*a(x)的系數(shù)這樣計算:*運(yùn)算不是普通的乘法運(yùn)算,而是特殊的運(yùn)算,即
b(x)=c(x)·a(x)(mod x4+1)
對于這個運(yùn)算
b0=02。a0+03。a1+a2+a3
令xtime(a0)=02。a0
其中,符號“?!北硎灸R粋€八次不可約多項(xiàng)式的同余乘法[3]。
mov temp,a0;這是一個mixcolimn子程序
rcall xtime;調(diào)用xtime程序
mov a0,temp
mov temp,a1
rcall xtime
eor a0,a1
eor a0,temp
eor a0,a2
eor a0,a3;完成b(x)的計算
.
.
.
xtime:;這是一個子程序
ldi temp1,$1b
lsl temp
brcs next1;如果最高位是1,則轉(zhuǎn)移
next: ret;否則什么也不變化
next1:eor temp,temp1
rjmp next
對于逆變化,其矩陣C要改變成相應(yīng)的D,即b(x)=d(x)*a(x)。
④ 密鑰加層運(yùn)算(addround)是將圈密鑰狀態(tài)中的對應(yīng)字節(jié)按位“異或”。
⑤ 根據(jù)線性變化的性質(zhì)[1],解密運(yùn)算是加密變化的逆變化。這里不再詳細(xì)敘述。
1.2輪變化
對不同的分組長度,其對應(yīng)的輪變化次數(shù)是不同的,如表1所列。
1.3密鑰擴(kuò)展
AES算法利用外部輸入密鑰K(密鑰串的字?jǐn)?shù)為Nk),通過密鑰的擴(kuò)展程序得到共計4(Nr+1)字的擴(kuò)展密鑰。它涉及如下三個模塊:
① 位置變換(rotword)——把一個4字節(jié)的序列[A,B,C,D]變化成[B,C,D,A];
② S盒變換(subword)——對一個4字節(jié)進(jìn)行S盒代替;
③ 變換Rcon[i]——Rcon[i]表示32位比特字[xi-1,00,00,00]。這里的x是(02),如
Rcon[1]=[01000000];Rcon[2]=[02000000];Rcon[3]=[04000000]……
擴(kuò)展密鑰的生成:擴(kuò)展密鑰的前Nk個字就是外部密鑰K;以后的字W[[i]]等于它前一個字W[[i-1]]與前第Nk個字W[[i-Nk]]的“異或”,即W[[i]]=W[[i-1]]?W[[i- Nk]]。但是若i為Nk的倍數(shù),則W[i]=W[i-Nk]?Subword(Rotword(W[[i-1]]))?Rcon[i/Nk]。
程序執(zhí)行的時候,主要調(diào)用以上幾個子程序,具體實(shí)現(xiàn)如下:
Keyexpansion:
rcall rotwoed
rcall subword
rcall Rcon
.
.
.
2 AES加密、解密算法的優(yōu)化
由以上算法的流程中可以清楚地看到,整個算法中程序耗時最多的就是圈變化部分,因此對于算法的優(yōu)化也就在此;而圈變化部分可以優(yōu)化的也就是列變化。因?yàn)榱凶兓且粋€模乘同余規(guī)則。由于AES加密和解密是不對稱的,如果不對其進(jìn)行優(yōu)化,會使算法的解密速度遠(yuǎn)遠(yuǎn)大于加密的速度[1]。
① 加密運(yùn)算。對列變換(Mixcolumn)可以通過調(diào)用xtime子程序進(jìn)行優(yōu)化。
另一種有效的優(yōu)化方法就是離線構(gòu)造一個表格,即列變化表格。這樣只要通過查表的方式就可以提高加密速度。
② 解密算法的優(yōu)化。由于解密的列變換的系數(shù)分別是09、0E、0B和0D。在AVR單片機(jī)上實(shí)現(xiàn)以上的乘法顯然是需要很多的時間,從而導(dǎo)致了解密的性能降低。
優(yōu)化方法一:對列變化進(jìn)行分解使倍乘次數(shù)降低。
仔細(xì)研究解密矩陣的系數(shù),不難發(fā)現(xiàn)解密矩陣和加密矩陣有著一定的聯(lián)系,即解密矩陣等于加密矩陣和一個矩陣的相乘。通過這樣的聯(lián)系,就可以對算法進(jìn)行優(yōu)化:
這樣一來,只用幾個簡單的“異或”就可以實(shí)現(xiàn)列變化,使倍乘的次數(shù)降低,提高解密的速度。
優(yōu)化方法二:構(gòu)造表格。
同加密構(gòu)造方法一樣,可以構(gòu)造四個表格T[ea]=e×a; T[9a]=9×a;T[9a]=9×a;T[ba]=b×a。這樣一來,也只需要進(jìn)行查表和簡單的異或就可以完成解密的任務(wù)。雖然這種方法將增加額外的開銷,但是它卻是一種有效的方法。
3 AES加密與解密的實(shí)驗(yàn)仿真
根據(jù)以上實(shí)驗(yàn)步驟和優(yōu)化方法得出表2、3所列實(shí)驗(yàn)結(jié)果。
設(shè)主密鑰為:000102030405060708090a0b0c0d0e0f(128bit)。
加密明文:00112233445566778899AABBCCDDEEFF。
密文:69C4E0D86A7B0430D8CDB78070B4C55A。
解密密文:69C4E0D86A7B0430D8CDB78070B4C55A。
明文:00112233445566778899AABBCCDDEEFF。
總之,AES密碼是一個非對稱密碼體制,它的解密要比加密復(fù)雜和費(fèi)時。解密優(yōu)化算法沒有增加存儲空間的基礎(chǔ)上,以列變化為基礎(chǔ)進(jìn)行處理,程序比原始的要小,而且節(jié)約了時間。解密優(yōu)化方法速度最快,效率最高,但要增加系統(tǒng)的存儲空間,因此它的程序也是最大的一個
流程圖省略 朋友參考吧
恰好我有。能運(yùn)行的,C語言的。
#include string.h
#include "aes.h"
#include "commonage.h"
#define byte unsigned char
#define BPOLY 0x1b //! Lower 8 bits of (x^8+x^4+x^3+x+1), ie. (x^4+x^3+x+1).
#define BLOCKSIZE 16 //! Block size in number of bytes.
#define KEYBITS 128 //! Use AES128.
#define ROUNDS 10 //! Number of rounds.
#define KEYLENGTH 16 //! Key length in number of bytes.
byte xdata block1[ 256 ]; //! Workspace 1.
byte xdata block2[ 256 ]; //! Worksapce 2.
byte xdata * powTbl; //! Final location of exponentiation lookup table.
byte xdata * logTbl; //! Final location of logarithm lookup table.
byte xdata * sBox; //! Final location of s-box.
byte xdata * sBoxInv; //! Final location of inverse s-box.
byte xdata * expandedKey; //! Final location of expanded key.
void CalcPowLog( byte * powTbl, byte * logTbl )
{
byte xdata i = 0;
byte xdata t = 1;
do {
// Use 0x03 as root for exponentiation and logarithms.
powTbl[i] = t;
logTbl[t] = i;
i++;
// Muliply t by 3 in GF(2^8).
t ^= (t 1) ^ (t 0x80 ? BPOLY : 0);
} while( t != 1 ); // Cyclic properties ensure that i 255.
powTbl[255] = powTbl[0]; // 255 = '-0', 254 = -1, etc.
}
void CalcSBox( byte * sBox )
{
byte xdata i, rot;
byte xdata temp;
byte xdata result;
// Fill all entries of sBox[].
i = 0;
do {
// Inverse in GF(2^8).
if( i 0 ) {
temp = powTbl[ 255 - logTbl[i] ];
} else {
temp = 0;
}
// Affine transformation in GF(2).
result = temp ^ 0x63; // Start with adding a vector in GF(2).
for( rot = 0; rot 4; rot++ ) {
// Rotate left.
temp = (temp1) | (temp7);
// Add rotated byte in GF(2).
result ^= temp;
}
// Put result in table.
sBox[i] = result;
} while( ++i != 0 );
}
void CalcSBoxInv( byte * sBox, byte * sBoxInv )
{
byte xdata i = 0;
byte xdata j = 0;
// Iterate through all elements in sBoxInv using i.
do {
// Search through sBox using j.
cleardog();
do {
// Check if current j is the inverse of current i.
if( sBox[ j ] == i ) {
// If so, set sBoxInc and indicate search finished.
sBoxInv[ i ] = j;
j = 255;
}
} while( ++j != 0 );
} while( ++i != 0 );
}
void CycleLeft( byte * row )
{
// Cycle 4 bytes in an array left once.
byte xdata temp = row[0];
row[0] = row[1];
row[1] = row[2];
row[2] = row[3];
row[3] = temp;
}
void InvMixColumn( byte * column )
{
byte xdata r0, r1, r2, r3;
r0 = column[1] ^ column[2] ^ column[3];
r1 = column[0] ^ column[2] ^ column[3];
r2 = column[0] ^ column[1] ^ column[3];
r3 = column[0] ^ column[1] ^ column[2];
column[0] = (column[0] 1) ^ (column[0] 0x80 ? BPOLY : 0);
column[1] = (column[1] 1) ^ (column[1] 0x80 ? BPOLY : 0);
column[2] = (column[2] 1) ^ (column[2] 0x80 ? BPOLY : 0);
column[3] = (column[3] 1) ^ (column[3] 0x80 ? BPOLY : 0);
r0 ^= column[0] ^ column[1];
r1 ^= column[1] ^ column[2];
r2 ^= column[2] ^ column[3];
r3 ^= column[0] ^ column[3];
column[0] = (column[0] 1) ^ (column[0] 0x80 ? BPOLY : 0);
column[1] = (column[1] 1) ^ (column[1] 0x80 ? BPOLY : 0);
column[2] = (column[2] 1) ^ (column[2] 0x80 ? BPOLY : 0);
column[3] = (column[3] 1) ^ (column[3] 0x80 ? BPOLY : 0);
r0 ^= column[0] ^ column[2];
r1 ^= column[1] ^ column[3];
r2 ^= column[0] ^ column[2];
r3 ^= column[1] ^ column[3];
column[0] = (column[0] 1) ^ (column[0] 0x80 ? BPOLY : 0);
column[1] = (column[1] 1) ^ (column[1] 0x80 ? BPOLY : 0);
column[2] = (column[2] 1) ^ (column[2] 0x80 ? BPOLY : 0);
column[3] = (column[3] 1) ^ (column[3] 0x80 ? BPOLY : 0);
column[0] ^= column[1] ^ column[2] ^ column[3];
r0 ^= column[0];
r1 ^= column[0];
r2 ^= column[0];
r3 ^= column[0];
column[0] = r0;
column[1] = r1;
column[2] = r2;
column[3] = r3;
}
byte Multiply( unsigned char num, unsigned char factor )
{
byte mask = 1;
byte result = 0;
while( mask != 0 ) {
// Check bit of factor given by mask.
if( mask factor ) {
// Add current multiple of num in GF(2).
result ^= num;
}
// Shift mask to indicate next bit.
mask = 1;
// Double num.
num = (num 1) ^ (num 0x80 ? BPOLY : 0);
}
return result;
}
byte DotProduct( unsigned char * vector1, unsigned char * vector2 )
{
byte result = 0;
result ^= Multiply( *vector1++, *vector2++ );
result ^= Multiply( *vector1++, *vector2++ );
result ^= Multiply( *vector1++, *vector2++ );
result ^= Multiply( *vector1 , *vector2 );
return result;
}
void MixColumn( byte * column )
{
byte xdata row[8] = {
0x02, 0x03, 0x01, 0x01,
0x02, 0x03, 0x01, 0x01
}; // Prepare first row of matrix twice, to eliminate need for cycling.
byte xdata result[4];
// Take dot products of each matrix row and the column vector.
result[0] = DotProduct( row+0, column );
result[1] = DotProduct( row+3, column );
result[2] = DotProduct( row+2, column );
result[3] = DotProduct( row+1, column );
// Copy temporary result to original column.
column[0] = result[0];
column[1] = result[1];
column[2] = result[2];
column[3] = result[3];
}
void SubBytes( byte * bytes, byte count )
{
do {
*bytes = sBox[ *bytes ]; // Substitute every byte in state.
bytes++;
} while( --count );
}
void InvSubBytesAndXOR( byte * bytes, byte * key, byte count )
{
do {
// *bytes = sBoxInv[ *bytes ] ^ *key; // Inverse substitute every byte in state and add key.
*bytes = block2[ *bytes ] ^ *key; // Use block2 directly. Increases speed.
bytes++;
key++;
} while( --count );
}
void InvShiftRows( byte * state )
{
byte temp;
// Note: State is arranged column by column.
// Cycle second row right one time.
temp = state[ 1 + 3*4 ];
state[ 1 + 3*4 ] = state[ 1 + 2*4 ];
state[ 1 + 2*4 ] = state[ 1 + 1*4 ];
state[ 1 + 1*4 ] = state[ 1 + 0*4 ];
state[ 1 + 0*4 ] = temp;
// Cycle third row right two times.
temp = state[ 2 + 0*4 ];
state[ 2 + 0*4 ] = state[ 2 + 2*4 ];
state[ 2 + 2*4 ] = temp;
temp = state[ 2 + 1*4 ];
state[ 2 + 1*4 ] = state[ 2 + 3*4 ];
state[ 2 + 3*4 ] = temp;
// Cycle fourth row right three times, ie. left once.
temp = state[ 3 + 0*4 ];
state[ 3 + 0*4 ] = state[ 3 + 1*4 ];
state[ 3 + 1*4 ] = state[ 3 + 2*4 ];
state[ 3 + 2*4 ] = state[ 3 + 3*4 ];
state[ 3 + 3*4 ] = temp;
}
void ShiftRows( byte * state )
{
byte temp;
// Note: State is arranged column by column.
// Cycle second row left one time.
temp = state[ 1 + 0*4 ];
state[ 1 + 0*4 ] = state[ 1 + 1*4 ];
state[ 1 + 1*4 ] = state[ 1 + 2*4 ];
state[ 1 + 2*4 ] = state[ 1 + 3*4 ];
state[ 1 + 3*4 ] = temp;
// Cycle third row left two times.
temp = state[ 2 + 0*4 ];
state[ 2 + 0*4 ] = state[ 2 + 2*4 ];
state[ 2 + 2*4 ] = temp;
temp = state[ 2 + 1*4 ];
state[ 2 + 1*4 ] = state[ 2 + 3*4 ];
state[ 2 + 3*4 ] = temp;
// Cycle fourth row left three times, ie. right once.
temp = state[ 3 + 3*4 ];
state[ 3 + 3*4 ] = state[ 3 + 2*4 ];
state[ 3 + 2*4 ] = state[ 3 + 1*4 ];
state[ 3 + 1*4 ] = state[ 3 + 0*4 ];
state[ 3 + 0*4 ] = temp;
}
void InvMixColumns( byte * state )
{
InvMixColumn( state + 0*4 );
InvMixColumn( state + 1*4 );
InvMixColumn( state + 2*4 );
InvMixColumn( state + 3*4 );
}
void MixColumns( byte * state )
{
MixColumn( state + 0*4 );
MixColumn( state + 1*4 );
MixColumn( state + 2*4 );
MixColumn( state + 3*4 );
}
void XORBytes( byte * bytes1, byte * bytes2, byte count )
{
do {
*bytes1 ^= *bytes2; // Add in GF(2), ie. XOR.
bytes1++;
bytes2++;
} while( --count );
}
void CopyBytes( byte * to, byte * from, byte count )
{
do {
*to = *from;
to++;
from++;
} while( --count );
}
void KeyExpansion( byte * expandedKey )
{
byte xdata temp[4];
byte i;
byte xdata Rcon[4] = { 0x01, 0x00, 0x00, 0x00 }; // Round constant.
unsigned char xdata *key;
unsigned char xdata a[16];
key=a;
//以下為加解密密碼,共16字節(jié)。可以選擇任意值
key[0]=0x30;
key[1]=0x30;
key[2]=0x30;
key[3]=0x30;
key[4]=0x30;
key[5]=0x30;
key[6]=0x30;
key[7]=0x30;
key[8]=0x30;
key[9]=0x30;
key[10]=0x30;
key[11]=0x30;
key[12]=0x30;
key[13]=0x30;
key[14]=0x30;
key[15]=0x30;
////////////////////////////////////////////
// Copy key to start of expanded key.
i = KEYLENGTH;
do {
*expandedKey = *key;
expandedKey++;
key++;
} while( --i );
// Prepare last 4 bytes of key in temp.
expandedKey -= 4;
temp[0] = *(expandedKey++);
temp[1] = *(expandedKey++);
temp[2] = *(expandedKey++);
temp[3] = *(expandedKey++);
// Expand key.
i = KEYLENGTH;
while( i BLOCKSIZE*(ROUNDS+1) ) {
// Are we at the start of a multiple of the key size?
if( (i % KEYLENGTH) == 0 ) {
CycleLeft( temp ); // Cycle left once.
SubBytes( temp, 4 ); // Substitute each byte.
XORBytes( temp, Rcon, 4 ); // Add constant in GF(2).
*Rcon = (*Rcon 1) ^ (*Rcon 0x80 ? BPOLY : 0);
}
// Keysize larger than 24 bytes, ie. larger that 192 bits?
#if KEYLENGTH 24
// Are we right past a block size?
else if( (i % KEYLENGTH) == BLOCKSIZE ) {
SubBytes( temp, 4 ); // Substitute each byte.
}
#endif
// Add bytes in GF(2) one KEYLENGTH away.
XORBytes( temp, expandedKey - KEYLENGTH, 4 );
// Copy result to current 4 bytes.
*(expandedKey++) = temp[ 0 ];
*(expandedKey++) = temp[ 1 ];
*(expandedKey++) = temp[ 2 ];
*(expandedKey++) = temp[ 3 ];
i += 4; // Next 4 bytes.
}
}
void InvCipher( byte * block, byte * expandedKey )
{
byte round = ROUNDS-1;
expandedKey += BLOCKSIZE * ROUNDS;
XORBytes( block, expandedKey, 16 );
expandedKey -= BLOCKSIZE;
do {
InvShiftRows( block );
InvSubBytesAndXOR( block, expandedKey, 16 );
expandedKey -= BLOCKSIZE;
InvMixColumns( block );
} while( --round );
InvShiftRows( block );
InvSubBytesAndXOR( block, expandedKey, 16 );
}
void Cipher( byte * block, byte * expandedKey ) //完成一個塊(16字節(jié),128bit)的加密
{
byte round = ROUNDS-1;
XORBytes( block, expandedKey, 16 );
expandedKey += BLOCKSIZE;
do {
SubBytes( block, 16 );
ShiftRows( block );
MixColumns( block );
XORBytes( block, expandedKey, 16 );
expandedKey += BLOCKSIZE;
} while( --round );
SubBytes( block, 16 );
ShiftRows( block );
XORBytes( block, expandedKey, 16 );
}
void aesInit( unsigned char * tempbuf )
{
powTbl = block1;
logTbl = block2;
CalcPowLog( powTbl, logTbl );
sBox = tempbuf;
CalcSBox( sBox );
expandedKey = block1; //至此block1用來存貯密碼表
KeyExpansion( expandedKey );
sBoxInv = block2; // Must be block2. block2至此開始只用來存貯SBOXINV
CalcSBoxInv( sBox, sBoxInv );
}
//對一個16字節(jié)塊解密,參數(shù)buffer是解密密緩存,chainBlock是要解密的塊
void aesDecrypt( unsigned char * buffer, unsigned char * chainBlock )
{
//byte xdata temp[ BLOCKSIZE ];
//CopyBytes( temp, buffer, BLOCKSIZE );
CopyBytes(buffer,chainBlock,BLOCKSIZE);
InvCipher( buffer, expandedKey );
//XORBytes( buffer, chainBlock, BLOCKSIZE );
CopyBytes( chainBlock, buffer, BLOCKSIZE );
}
//對一個16字節(jié)塊完成加密,參數(shù)buffer是加密緩存,chainBlock是要加密的塊
void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock )
{
CopyBytes( buffer, chainBlock, BLOCKSIZE );
//XORBytes( buffer, chainBlock, BLOCKSIZE );
Cipher( buffer, expandedKey );
CopyBytes( chainBlock, buffer, BLOCKSIZE );
}
//加解密函數(shù),參數(shù)為加解密標(biāo)志,要加解密的數(shù)據(jù)緩存起始指針,要加解密的數(shù)據(jù)長度(如果解密運(yùn)算,必須是16的整數(shù)倍。)
unsigned char aesBlockDecrypt(bit Direct,unsigned char *ChiperDataBuf,unsigned char DataLen)
{
unsigned char xdata i;
unsigned char xdata Blocks;
unsigned char xdata sBoxbuf[256];
unsigned char xdata tempbuf[16];
unsigned long int xdata OrignLen=0; //未加密數(shù)據(jù)的原始長度
if(Direct==0)
{
*((unsigned char *)OrignLen+3)=ChiperDataBuf[0];
*((unsigned char *)OrignLen+2)=ChiperDataBuf[1];
*((unsigned char *)OrignLen+1)=ChiperDataBuf[2];
*((unsigned char *)OrignLen)=ChiperDataBuf[3];
DataLen=DataLen-4;
}
else
{
memmove(ChiperDataBuf+4,ChiperDataBuf,DataLen);
OrignLen=DataLen;
ChiperDataBuf[0]=OrignLen;
ChiperDataBuf[1]=OrignLen8;
ChiperDataBuf[2]=OrignLen16;
ChiperDataBuf[3]=OrignLen24;
}
cleardog();
aesInit(sBoxbuf); //初始化
if(Direct==0) //解密
{
Blocks=DataLen/16;
for(i=0;iBlocks;i++)
{
cleardog();
aesDecrypt(tempbuf,ChiperDataBuf+4+16*i);
}
memmove(ChiperDataBuf,ChiperDataBuf+4,OrignLen);
cleardog();
return(OrignLen);
}
else //加密
{
if(DataLen%16!=0)
{
Blocks=DataLen/16+1;
//memset(ChiperDataBuf+4+Blocks*16-(DataLen%16),0x00,DataLen%16); //不足16字節(jié)的塊補(bǔ)零處理
}
else
{
Blocks=DataLen/16;
}
for(i=0;iBlocks;i++)
{
cleardog();
aesEncrypt(tempbuf,ChiperDataBuf+4+16*i);
}
cleardog();
return(Blocks*16+4);
}
}
//#endif
以上是C文件。以下是頭文件
#ifndef AES_H
#define AES_H
extern void aesInit( unsigned char * tempbuf );
extern void aesDecrypt(unsigned char *buffer, unsigned char *chainBlock);
extern void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock );
extern void aesInit( unsigned char * tempbuf );
extern void aesDecrypt( unsigned char * buffer, unsigned char * chainBlock );
extern void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock );
extern unsigned char aesBlockDecrypt(bit Direct,unsigned char *ChiperDataBuf,unsigned char DataLen);
#endif // AES_H
這是我根據(jù)網(wǎng)上程序改寫的。只支持128位加解密。沒有使用占內(nèi)存很多的查表法。故運(yùn)算速度會稍慢。