首先,數(shù)據(jù)量大的時(shí)候,應(yīng)盡量避免全表掃描,應(yīng)考慮在 where 及 order by 涉及的列上建立索引,建索引可以大大加快數(shù)據(jù)的檢索速度。 但是,有些情況索引是不會起效的:
清苑網(wǎng)站制作公司哪家好,找創(chuàng)新互聯(lián)!從網(wǎng)頁設(shè)計(jì)、網(wǎng)站建設(shè)、微信開發(fā)、APP開發(fā)、響應(yīng)式網(wǎng)站設(shè)計(jì)等網(wǎng)站項(xiàng)目制作,到程序開發(fā),運(yùn)營維護(hù)。創(chuàng)新互聯(lián)從2013年開始到現(xiàn)在10年的時(shí)間,我們擁有了豐富的建站經(jīng)驗(yàn)和運(yùn)維經(jīng)驗(yàn),來保證我們的工作的順利進(jìn)行。專注于網(wǎng)站建設(shè)就選創(chuàng)新互聯(lián)。
1、應(yīng)盡量避免在 where 子句中使用!=或操作符,否則將引擎放棄使用索引而進(jìn)行全表掃描。
2、應(yīng)盡量避免在 where 子句中對字段進(jìn)行 null 值判斷,否則將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描,如:
select id from t where num is null
可以在num上設(shè)置默認(rèn)值0,確保表中num列沒有null值,然后這樣查詢:
select id from t where num=0
3、盡量避免在 where 子句中使用 or 來連接條件,否則將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
4、下面的查詢也將導(dǎo)致全表掃描:
select id from t where name like ‘%abc%’
若要提高效率,可以考慮全文檢索。
5、in 和 not in 也要慎用,否則會導(dǎo)致全表掃描,如:
select id from t where num in(1,2,3)
對于連續(xù)的數(shù)值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6、如果在 where 子句中使用參數(shù),也會導(dǎo)致全表掃描。因?yàn)镾QL只有在運(yùn)行時(shí)才會解析局部變量,但優(yōu)化程序不能將訪問計(jì)劃的選擇推遲到運(yùn)行時(shí);它必須在編譯時(shí)進(jìn)行選擇。然而,如果在編譯時(shí)建立訪問計(jì)劃,變量的值還是未知的,因而無法作為索引選擇的輸入項(xiàng)。如下面語句將進(jìn)行全表掃描:
select id from t where num=@num
可以改為強(qiáng)制查詢使用索引:
select id from t with(index(索引名)) where num=@num
7、應(yīng)盡量避免在 where 子句中對字段進(jìn)行表達(dá)式操作,這將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描。如:
select id from t where num/2=100
應(yīng)改為:
select id from t where num=100*2
8、應(yīng)盡量避免在where子句中對字段進(jìn)行函數(shù)操作,這將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描。如:
select id from t where substring(name,1,3)=’abc’–name以abc開頭的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
應(yīng)改為:
select id from t where name like ‘a(chǎn)bc%’
select id from t where createdate=’2005-11-30′ and createdate’2005-12-1′
9、不要在 where 子句中的“=”左邊進(jìn)行函數(shù)、算術(shù)運(yùn)算或其他表達(dá)式運(yùn)算,否則系統(tǒng)將可能無法正確使用索引。
10、在使用索引字段作為條件時(shí),如果該索引是復(fù)合索引,那么必須使用到該索引中的第一個(gè)字段作為條件時(shí)才能保證系統(tǒng)使用該索引,否則該索引將不會被使用,并且應(yīng)盡可能的讓字段順序與索引順序相一致。
11、不要寫一些沒有意義的查詢,如需要生成一個(gè)空表結(jié)構(gòu):
select col1,col2 into #t from t where 1=0
這類代碼不會返回任何結(jié)果集,但是會消耗系統(tǒng)資源的,應(yīng)改成這樣:
create table #t(…)
12、很多時(shí)候用 exists 代替 in 是一個(gè)好的選擇:
select num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
在開始演示之前,我們先介紹下兩個(gè)概念。
概念一,數(shù)據(jù)的可選擇性基數(shù),也就是常說的cardinality值。
查詢優(yōu)化器在生成各種執(zhí)行計(jì)劃之前,得先從統(tǒng)計(jì)信息中取得相關(guān)數(shù)據(jù),這樣才能估算每步操作所涉及到的記錄數(shù),而這個(gè)相關(guān)數(shù)據(jù)就是cardinality。簡單來說,就是每個(gè)值在每個(gè)字段中的唯一值分布狀態(tài)。
比如表t1有100行記錄,其中一列為f1。f1中唯一值的個(gè)數(shù)可以是100個(gè),也可以是1個(gè),當(dāng)然也可以是1到100之間的任何一個(gè)數(shù)字。這里唯一值越的多少,就是這個(gè)列的可選擇基數(shù)。
那看到這里我們就明白了,為什么要在基數(shù)高的字段上建立索引,而基數(shù)低的的字段建立索引反而沒有全表掃描來的快。當(dāng)然這個(gè)只是一方面,至于更深入的探討就不在我這篇探討的范圍了。
概念二,關(guān)于HINT的使用。
這里我來說下HINT是什么,在什么時(shí)候用。
HINT簡單來說就是在某些特定的場景下人工協(xié)助MySQL優(yōu)化器的工作,使她生成最優(yōu)的執(zhí)行計(jì)劃。一般來說,優(yōu)化器的執(zhí)行計(jì)劃都是最優(yōu)化的,不過在某些特定場景下,執(zhí)行計(jì)劃可能不是最優(yōu)化。
比如:表t1經(jīng)過大量的頻繁更新操作,(UPDATE,DELETE,INSERT),cardinality已經(jīng)很不準(zhǔn)確了,這時(shí)候剛好執(zhí)行了一條SQL,那么有可能這條SQL的執(zhí)行計(jì)劃就不是最優(yōu)的。為什么說有可能呢?
來看下具體演示
譬如,以下兩條SQL,
A:
select * from t1 where f1 = 20;
B:
select * from t1 where f1 = 30;
如果f1的值剛好頻繁更新的值為30,并且沒有達(dá)到MySQL自動更新cardinality值的臨界值或者說用戶設(shè)置了手動更新又或者用戶減少了sample page等等,那么對這兩條語句來說,可能不準(zhǔn)確的就是B了。
這里順帶說下,MySQL提供了自動更新和手動更新表cardinality值的方法,因篇幅有限,需要的可以查閱手冊。
那回到正題上,MySQL 8.0 帶來了幾個(gè)HINT,我今天就舉個(gè)index_merge的例子。
示例表結(jié)構(gòu):
mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field ? ? ?| Type ? ? ? ? | Null | Key | Default | Extra ? ? ? ? ?|+------------+--------------+------+-----+---------+----------------+| id ? ? ? ? | int(11) ? ? ?| NO ? | PRI | NULL ? ?| auto_increment || rank1 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| rank2 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| log_time ? | datetime ? ? | YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| prefix_uid | varchar(100) | YES ?| ? ? | NULL ? ?| ? ? ? ? ? ? ? ?|| desc1 ? ? ?| text ? ? ? ? | YES ?| ? ? | NULL ? ?| ? ? ? ? ? ? ? ?|| rank3 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)
表記錄數(shù):
mysql select count(*) from t1;+----------+| count(*) |+----------+| ? ?32768 |+----------+1 row in set (0.01 sec)
這里我們兩條經(jīng)典的SQL:
SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;
SQL D:
select * from t1 where rank1 =100 ?and rank2 =100 ?and rank3 =100;
表t1實(shí)際上在rank1,rank2,rank3三列上分別有一個(gè)二級索引。
那我們來看SQL C的查詢計(jì)劃。
顯然,沒有用到任何索引,掃描的行數(shù)為32034,cost為3243.65。
mysql explain ?format=json select * from t1 ?where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "3243.65" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "ALL", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"rows_examined_per_scan": 32034, ? ? ?"rows_produced_per_join": 115, ? ? ?"filtered": "0.36", ? ? ?"cost_info": { ? ? ? ?"read_cost": "3232.07", ? ? ? ?"eval_cost": "11.58", ? ? ? ?"prefix_cost": "3243.65", ? ? ? ?"data_read_per_join": "49K" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
我們加上hint給相同的查詢,再次看看查詢計(jì)劃。
這個(gè)時(shí)候用到了index_merge,union了三個(gè)列。掃描的行數(shù)為1103,cost為441.09,明顯比之前的快了好幾倍。
mysql explain ?format=json select /*+ index_merge(t1) */ * from t1 ?where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "441.09" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "index_merge", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "union(idx_rank1,idx_rank2,idx_rank3)", ? ? ?"key_length": "5,5,5", ? ? ?"rows_examined_per_scan": 1103, ? ? ?"rows_produced_per_join": 1103, ? ? ?"filtered": "100.00", ? ? ?"cost_info": { ? ? ? ?"read_cost": "330.79", ? ? ? ?"eval_cost": "110.30", ? ? ? ?"prefix_cost": "441.09", ? ? ? ?"data_read_per_join": "473K" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
我們再看下SQL D的計(jì)劃:
不加HINT,
mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "534.34" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "ref", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "idx_rank1", ? ? ?"used_key_parts": [ ? ? ? ?"rank1" ? ? ?], ? ? ?"key_length": "5", ? ? ?"ref": [ ? ? ? ?"const" ? ? ?], ? ? ?"rows_examined_per_scan": 555, ? ? ?"rows_produced_per_join": 0, ? ? ?"filtered": "0.07", ? ? ?"cost_info": { ? ? ? ?"read_cost": "478.84", ? ? ? ?"eval_cost": "0.04", ? ? ? ?"prefix_cost": "534.34", ? ? ? ?"data_read_per_join": "176" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
加了HINT,
mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "5.23" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "index_merge", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "intersect(idx_rank1,idx_rank2,idx_rank3)", ? ? ?"key_length": "5,5,5", ? ? ?"rows_examined_per_scan": 1, ? ? ?"rows_produced_per_join": 1, ? ? ?"filtered": "100.00", ? ? ?"cost_info": { ? ? ? ?"read_cost": "5.13", ? ? ? ?"eval_cost": "0.10", ? ? ? ?"prefix_cost": "5.23", ? ? ? ?"data_read_per_join": "440" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
對比下以上兩個(gè),加了HINT的比不加HINT的cost小了100倍。
總結(jié)下,就是說表的cardinality值影響這張的查詢計(jì)劃,如果這個(gè)值沒有正常更新的話,就需要手工加HINT了。相信MySQL未來的版本會帶來更多的HINT。
一、優(yōu)化表的數(shù)據(jù)類型
select * from tablename procedure analyse(16.265);
上面輸出一列信息,牟你數(shù)據(jù)表的字段提出優(yōu)化建義,
二、通過拆分表提高數(shù)據(jù)訪問效率
拆分一是指針對表進(jìn)行拆分,如果是針對myisam類型的表進(jìn)行處理的話,可以有兩種拆分方法
1、是垂直拆分,把主要的與一些散放到一個(gè)表,然后把主要的和另外的列放在另一張表。
2、水平拆分方法,根據(jù)一列或多列的值把數(shù)據(jù)行放到兩個(gè)獨(dú)立的表中,水平拆分通常幾種情況。
表很大,拆分后可降低查詢時(shí)數(shù)據(jù)和索引的查詢速度,同時(shí)也降低了索引的層數(shù),提高查詢的速度。
表中的數(shù)據(jù)本來就有獨(dú)立性,表中分別記錄各個(gè)地區(qū)的數(shù)據(jù)或不同時(shí)期的數(shù)據(jù),特別是有些數(shù)據(jù)常用,廁國一些數(shù)據(jù)不常用的情況下,
需要把數(shù)據(jù)存放到多個(gè)不同的介質(zhì)上。
三、逆規(guī)范化
四、使用中間表優(yōu)化方法
對于數(shù)據(jù)庫教程大的表源碼天空