函數(shù)的遞歸調(diào)用
讓客戶滿意是我們工作的目標,不斷超越客戶的期望值來自于我們對這個行業(yè)的熱愛。我們立志把好的技術(shù)通過有效、簡單的方式提供給客戶,將通過不懈努力成為客戶在信息化領(lǐng)域值得信任、有價值的長期合作伙伴,公司提供的服務項目有:空間域名、網(wǎng)站空間、營銷軟件、網(wǎng)站建設、向陽網(wǎng)站維護、網(wǎng)站推廣。
遞歸問題是一個說簡單也簡單,說難也有點難理解的問題.我想非常有必要對其做一個總結(jié).
首先理解一下遞歸的定義,遞歸就是直接或間接的調(diào)用自身.而至于什么時候要用到遞歸,遞歸和非遞歸又有那些區(qū)別?又是一個不太容易掌握的問題,更難的是對于遞歸調(diào)用的理解.下面我們就從程序+圖形的角度對遞歸做一個全面的闡述.
我們從常見到的遞歸問題開始:
1 階層函數(shù)
#include iostream
using namespace std;
int factorial(int n)
{
if (n == 0)
{
return 1;
}
else
{
int result = factorial(n-1);
return n * result;
}
}
int main()
{
int x = factorial(3);
cout x endl;
return 0;
}
這是一個遞歸求階層函數(shù)的實現(xiàn)。很多朋友只是知道該這么實現(xiàn)的,也清楚它是通過不斷的遞歸調(diào)用求出的結(jié)果.但他們有些不清楚中間發(fā)生了些什么.下面我們用圖對此做一個清楚的流程:
根據(jù)上面這個圖,大家可以很清楚的看出來這個函數(shù)的執(zhí)行流程。我們的階層函數(shù)factorial被調(diào)用了4次.并且我們可以看出在調(diào)用后面的調(diào)用中,前面的調(diào)用并不退出。他們同時存在內(nèi)存中??梢娺@是一件很浪費資源的事情。我們該次的參數(shù)是3.如果我們傳遞10000呢。那結(jié)果就可想而知了.肯定是溢出了.就用int型來接收結(jié)果別說10000,100就會產(chǎn)生溢出.即使不溢出我想那肯定也是見很浪費資源的事情.我們可以做一個粗略的估計:每次函數(shù)調(diào)用就單變量所需的內(nèi)存為:兩個int型變量.n和result.在32位機器上占8B.那么10000就需要10001次函數(shù)調(diào)用.共需10001*8/1024 = 78KB.這只是變量所需的內(nèi)存空間.其它的函數(shù)調(diào)用時函數(shù)入口地址等仍也需要占用內(nèi)存空間??梢娺f歸調(diào)用產(chǎn)生了一個不小的開銷.
2 斐波那契數(shù)列
int Fib(int n)
{
if (n = 1)
{
return n;
}
else
{
return Fib(n-1) + Fib(n-2);
}
}
這個函數(shù)遞歸與上面的那個有些不同.每次調(diào)用函數(shù)都會引起另外兩次的調(diào)用.最后將結(jié)果逐級返回.
我們可以看出這個遞歸函數(shù)同樣在調(diào)用后買的函數(shù)時,前面的不退出而是在等待后面的結(jié)果,最后求出總結(jié)果。這就是遞歸.
3
#include iostream
using namespace std;
void recursiveFunction1(int num)
{
if (num 5)
{
cout num endl;
recursiveFunction1(num+1);
}
}
void recursiveFunction2(int num)
{
if (num 5)
{
recursiveFunction2(num+1);
cout num endl;
}
}
int main()
{
recursiveFunction1(0);
recursiveFunction2(0);
return 0;
}
運行結(jié)果:
1
2
3
4
4
3
2
1
該程序中有兩個遞歸函數(shù)。傳遞同樣的參數(shù),但他們的輸出結(jié)果剛好相反。理解這兩個函數(shù)的調(diào)用過程可以很好的幫助我們理解遞歸:
我想能夠把上面三個函數(shù)的遞歸調(diào)用過程理解了,你已經(jīng)把遞歸調(diào)用理解的差不多了.并且從上面的遞歸調(diào)用中我們可以總結(jié)出遞歸的一個規(guī)律:他是逐級的調(diào)用,而在函數(shù)結(jié)束的時候是從最后面往前反序的結(jié)束.這種方式是很占用資源,也很費時的。但是有的時候使用遞歸寫出來的程序很容易理解,很易讀.
為什么使用遞歸:
1 有時候使用遞歸寫出來的程序很容易理解,很易讀.
2 有些問題只有遞歸能夠解決.非遞歸的方法無法實現(xiàn).如:漢諾塔.
遞歸的條件:
并不是說所有的問題都可以使用遞歸解決,他必須的滿足一定的條件。即有一個出口點.也就是說當滿足一定條件時,程序可以結(jié)束,從而完成遞歸調(diào)用,否則就陷入了無限的遞歸調(diào)用之中了.并且這個條件還要是可達到的.
遞歸有哪些優(yōu)點:
易讀,容易理解,代碼一般比較短.
遞歸有哪些缺點:
占用內(nèi)存資源多,費時,效率低下.
因此在我們寫程序的時候不要輕易的使用遞歸,雖然他有他的優(yōu)點,但是我們要在易讀性和空間,效率上多做權(quán)衡.一般情況下我們還是使用非遞歸的方法解決問題.若一個算法非遞歸解法非常難于理解。我們使用遞歸也未嘗不可.如:二叉樹的遍歷算法.非遞歸的算法很難與理解.而相比遞歸算法就容易理解很多.
對于遞歸調(diào)用的問題,我們在前一段時間寫圖形學程序時,其中有一個四連同填充算法就是使用遞歸的方法。結(jié)果當要填充的圖形稍微大一些時,程序就自動關(guān)閉了.這不是一個人的問題,所有人寫出來的都是這個問題.當時我們給與的解釋就是堆棧溢出。就多次遞歸調(diào)用占用太多的內(nèi)存資源致使堆棧溢出,程序沒有內(nèi)存資源執(zhí)行下去,從而被操作系統(tǒng)強制關(guān)閉了.這是一個真真切切的例子。所以我們在使用遞歸的時候需要權(quán)衡再三.
首先我們要了解一下什么是遞歸。
遞歸法,遞歸法就是利用上一個或者上幾個狀態(tài)來求取當前狀態(tài)的值(個人看法)。也可以說成函數(shù)自己調(diào)用自己的一種解決問題的策略。因此遞歸法通常是依托函數(shù)來實現(xiàn)的,遞歸函數(shù)總是會有一個出口,我們在解決遞歸問題時,只需要找出遞歸的關(guān)系式以及遞歸函數(shù)的出口(這兩個可以說是遞歸函數(shù)的核心了)。下面我將在這里舉求斐波那契值的例子帶領(lǐng)著大家具體的實踐一下遞歸法。
很顯然遞歸函數(shù)的遞推式是:fib(n) = fib(n-1)+fib(n-2)。
遞歸函數(shù)的出口是當n為1時返回1,當n為0時返回0。
最后遞歸函數(shù)的核心代碼就可以寫出了:
然后總的代碼就是:
具體思路如下:
語句 return fib(n-1)+fib(n-2)的意思就是向前求斐波那契值,直到n-1=1,n-2=0
因為只有第1個和第0個斐波那契值是確定的
例:
當n=3時
第一次調(diào)用函數(shù)fib會執(zhí)行第三條語句(因為n1)這樣求回返回fib(2)+fib(1)
第二次調(diào)用函數(shù)時,因為21所有會返回fib(1)+fib(0);因為1不大于1,所以調(diào)用函數(shù)時
會執(zhí)行第二條語句返回1值。
第三次調(diào)用函數(shù),會執(zhí)行第一和第二條語句,依次返回0和1從而求得fib(2)
fib(3)=fib(2)+fib(1)
fib(2)=fib(1)+fib(0)
即fib(3)=fib(1)+fib(0)+fib(1)=2*fib(1)+fib(0)
所謂基例就是不需要遞歸就能求解的,一般來說是問題的最小規(guī)模下的解。
例如:斐波那契數(shù)列遞歸,f(n)
=
f(n-1)
+
f(n-2),基例是1和2,f(1)和f(2)結(jié)果都是1
再比如:漢諾塔遞歸,基例就是1個盤子的情況,只需移動一次,無需遞歸
遞歸必須有基例,否則就是無法退出的遞歸,不能求解。
程序調(diào)用自身的編程技巧稱為遞歸( recursion)。遞歸做為一種算法在程序設計語言中廣泛應用。 一個過程或函數(shù)在其定義或說明中有直接或間接調(diào)用自身的一種方法。
它通常把一個大型復雜的問題層層轉(zhuǎn)化為一個與原問題相似的規(guī)模較小的問題來求解,遞歸策略只需少量的程序就可描述出解題過程所需要的多次重復計算,大大地減少了程序的代碼量。
遞歸的能力在于用有限的語句來定義對象的無限集合。一般來說,遞歸需要有邊界條件、遞歸前進段和遞歸返回段。當邊界條件不滿足時,遞歸前進;當邊界條件滿足時,遞歸返回。
Python
是完全面向?qū)ο蟮恼Z言。函數(shù)、模塊、數(shù)字、字符串都是對象。并且完全支持繼承、重載、派生、多繼承,有益于增強源代碼的復用性。Python支持重載運算符和動態(tài)類型。相對于Lisp這種傳統(tǒng)的函數(shù)式編程語言,Python對函數(shù)式設計只提供了有限的支持。有兩個標準庫(functools, itertools)提供了Haskell和Standard ML中久經(jīng)考驗的函數(shù)式程序設計工具。
簡單說,解決以上問題的思路是,循環(huán)執(zhí)行n*n-1,直到n=1時。
#!/usr/local/bin/python3.3def recursion(n): #定義函數(shù) if n == 1: return 1 else:
return n * recursion(n-1)print(recursion(10))
該示例執(zhí)行結(jié)果是:
如何理解呢?第一點,函數(shù)中,調(diào)用自身函數(shù)的那部分句子,即return n *
recursion(n-1),把recursion(n-1)想像成另一個獨立的函數(shù),該函數(shù)的功能返回n-1的值,如果n的值是1,則返回1,函數(shù)運行結(jié)束。第二點,直觀的看,可以把return
n * recursion(n-1)看成return n*(n-1)*(n-2)...1。而遞歸函數(shù)無非是在指定的條件下做普通的循環(huán)而已。