不寫出y=f(x)這樣的表達(dá)式,由隱函數(shù)的等式直接繪制圖像,以x2+y2+xy=1的圖像為例,使用sympy間接調(diào)用matplotlib工具的代碼和該二次曲線圖像如下(注意python里的乘冪符號是**而不是^,還有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),這幾點和matlab的區(qū)別很大)
網(wǎng)站建設(shè)哪家好,找創(chuàng)新互聯(lián)!專注于網(wǎng)頁設(shè)計、網(wǎng)站建設(shè)、微信開發(fā)、微信小程序開發(fā)、集團(tuán)企業(yè)網(wǎng)站建設(shè)等服務(wù)項目。為回饋新老客戶創(chuàng)新互聯(lián)還提供了龍南免費建站歡迎大家使用!
直接在命令提示行的里面運行代碼的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
作者:邁克爾·貝耶勒(Michael Beyeler)
如需轉(zhuǎn)載請聯(lián)系華章 科技
如果已安裝Anaconda Python版本,就已經(jīng)安裝好了可以使用的 Matplotlib。否則,可能要訪問官網(wǎng)并從中獲取安裝說明:
正如使用np作為 NumPy 的縮寫,我們將使用一些標(biāo)準(zhǔn)的縮寫來表示 Matplotlib 的引入:
在本書中,plt接口會被頻繁使用。
讓我們創(chuàng)建第一個繪圖。
假設(shè)想要畫出正弦函數(shù)sin(x)的線性圖。得到函數(shù)在x坐標(biāo)軸上0≤x<10內(nèi)所有點的值。我們將使用 NumPy 中的 linspace 函數(shù)來在x坐標(biāo)軸上創(chuàng)建一個從0到10的線性空間,以及100個采樣點:
可以使用 NumPy 中的sin函數(shù)得到所有x點的值,并通過調(diào)用plt中的plot函數(shù)把結(jié)果畫出來:
你親自嘗試了嗎?發(fā)生了什么嗎?有沒有什么東西出現(xiàn)?
實際情況是,取決于你在哪里運行腳本,可能無法看到任何東西。有下面幾種可能性:
1. 從.py腳本中繪圖
如果從一個腳本中運行 Matplotlib,需要加上下面的這行調(diào)用:
在腳本末尾調(diào)用這個函數(shù),你的繪圖就會出現(xiàn)!
2. 從 IPython shell 中繪圖
這實際上是交互式地執(zhí)行Matplotlib最方便的方式。為了讓繪圖出現(xiàn),需要在啟動 IPython 后使用所謂的%matplotlib魔法命令。
接下來,無須每次調(diào)用plt.show()函數(shù),所有的繪圖將會自動出現(xiàn)。
3. 從 Jupyter Notebook 中繪圖
如果你是從基于瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會有兩種輸出選項:
在本書中,將會使用inline選項:
現(xiàn)在再次嘗試一下:
上面的命令會得到下面的繪圖輸出結(jié)果:
如果想要把繪圖保存下來留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
僅需要確保你使用了支持的文件后綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作為本章最后一個測試,讓我們對外部數(shù)據(jù)集進(jìn)行可視化,比如scikit-learn中的數(shù)字?jǐn)?shù)據(jù)集。
為此,需要三個可視化工具:
那么開始引入這些包吧:
第一步是載入實際數(shù)據(jù):
如果沒記錯的話,digits應(yīng)該有兩個不同的數(shù)據(jù)域:data域包含了真正的圖像數(shù)據(jù),target域包含了圖像的標(biāo)簽。相對于相信我們的記憶,我們還是應(yīng)該對digits稍加 探索 。輸入它的名字,添加一個點號,然后按Tab鍵:digits.TAB,這個操作將向我們展示digits也包含了一些其他的域,比如一個名為images的域。images和data這兩個域,似乎簡單從形狀上就可以區(qū)分。
兩種情況中,第一維對應(yīng)的都是數(shù)據(jù)集中的圖像數(shù)量。然而,data中所有像素都在一個大的向量中排列,而images保留了各個圖像8×8的空間排列。
因此,如果想要繪制出一副單獨的圖像,使用images將更加合適。首先,使用NumPy的數(shù)組切片從數(shù)據(jù)集中獲取一幅圖像:
這里是從1797個元素的數(shù)組中獲取了它的第一行數(shù)據(jù),這行數(shù)據(jù)對應(yīng)的是8×8=64個像素。下面就可以使用plt中的imshow函數(shù)來繪制這幅圖像:
上面的命令得到下面的輸出:
此外,這里也使用cmap參數(shù)指定了一個顏色映射。默認(rèn)情況下,Matplotlib 使用MATLAB默認(rèn)的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。
最后,可以使用plt的subplot函數(shù)繪制全部數(shù)字的樣例。subplot函數(shù)與MATLAB中的函數(shù)一樣,需要指定行數(shù)、列數(shù)以及當(dāng)前的子繪圖索引(從1開始計算)。我們將使用for 循環(huán)在數(shù)據(jù)集中迭代出前十張圖像,每張圖像都分配到一個單獨的子繪圖中。
這會得到下面的輸出結(jié)果:
關(guān)于作者:Michael Beyeler,華盛頓大學(xué)神經(jīng)工程和數(shù)據(jù)科學(xué)專業(yè)的博士后,主攻仿生視覺計算模型,用以為盲人植入人工視網(wǎng)膜(仿生眼睛),改善盲人的視覺體驗。 他的工作屬于神經(jīng)科學(xué)、計算機(jī)工程、計算機(jī)視覺和機(jī)器學(xué)習(xí)的交叉領(lǐng)域。同時他也是多個開源項目的積極貢獻(xiàn)者。
本文摘編自《機(jī)器學(xué)習(xí):使用OpenCV和Python進(jìn)行智能圖像處理》,經(jīng)出版方授權(quán)發(fā)布。
想象一下,您有一個線性方程組和不等式系統(tǒng)。這樣的系統(tǒng)通常有許多可能的解決方案。線性規(guī)劃是一組數(shù)學(xué)和計算工具,可讓您找到該系統(tǒng)的特定解,該解對應(yīng)于某些其他線性函數(shù)的最大值或最小值。
混合整數(shù)線性規(guī)劃是 線性規(guī)劃 的擴(kuò)展。它處理至少一個變量采用離散整數(shù)而不是連續(xù)值的問題。盡管乍一看混合整數(shù)問題與連續(xù)變量問題相似,但它們在靈活性和精度方面具有顯著優(yōu)勢。
整數(shù)變量對于正確表示自然用整數(shù)表示的數(shù)量很重要,例如生產(chǎn)的飛機(jī)數(shù)量或服務(wù)的客戶數(shù)量。
一種特別重要的整數(shù)變量是 二進(jìn)制變量 。它只能取 零 或 一 的值,在做出是或否的決定時很有用,例如是否應(yīng)該建造工廠或者是否應(yīng)該打開或關(guān)閉機(jī)器。您還可以使用它們來模擬邏輯約束。
線性規(guī)劃是一種基本的優(yōu)化技術(shù),已在科學(xué)和數(shù)學(xué)密集型領(lǐng)域使用了數(shù)十年。它精確、相對快速,適用于一系列實際應(yīng)用。
混合整數(shù)線性規(guī)劃允許您克服線性規(guī)劃的許多限制。您可以使用分段線性函數(shù)近似非線性函數(shù)、使用半連續(xù)變量、模型邏輯約束等。它是一種計算密集型工具,但計算機(jī)硬件和軟件的進(jìn)步使其每天都更加適用。
通常,當(dāng)人們試圖制定和解決優(yōu)化問題時,第一個問題是他們是否可以應(yīng)用線性規(guī)劃或混合整數(shù)線性規(guī)劃。
以下文章說明了線性規(guī)劃和混合整數(shù)線性規(guī)劃的一些用例:
隨著計算機(jī)能力的增強(qiáng)、算法的改進(jìn)以及更多用戶友好的軟件解決方案的出現(xiàn),線性規(guī)劃,尤其是混合整數(shù)線性規(guī)劃的重要性隨著時間的推移而增加。
解決線性規(guī)劃問題的基本方法稱為,它有多種變體。另一種流行的方法是。
混合整數(shù)線性規(guī)劃問題可以通過更復(fù)雜且計算量更大的方法來解決,例如,它在幕后使用線性規(guī)劃。這種方法的一些變體是,它涉及使用 切割平面 ,以及。
有幾種適用于線性規(guī)劃和混合整數(shù)線性規(guī)劃的合適且眾所周知的 Python 工具。其中一些是開源的,而另一些是專有的。您是否需要免費或付費工具取決于問題的規(guī)模和復(fù)雜性,以及對速度和靈活性的需求。
值得一提的是,幾乎所有廣泛使用的線性規(guī)劃和混合整數(shù)線性規(guī)劃庫都是以 Fortran 或 C 或 C++ 原生和編寫的。這是因為線性規(guī)劃需要對(通常很大)矩陣進(jìn)行計算密集型工作。此類庫稱為求解器。Python 工具只是求解器的包裝器。
Python 適合圍繞本機(jī)庫構(gòu)建包裝器,因為它可以很好地與 C/C++ 配合使用。對于本教程,您不需要任何 C/C++(或 Fortran),但如果您想了解有關(guān)此酷功能的更多信息,請查看以下資源:
基本上,當(dāng)您定義和求解模型時,您使用 Python 函數(shù)或方法調(diào)用低級庫,該庫執(zhí)行實際優(yōu)化工作并將解決方案返回給您的 Python 對象。
幾個免費的 Python 庫專門用于與線性或混合整數(shù)線性規(guī)劃求解器交互:
在本教程中,您將使用SciPy和PuLP來定義和解決線性規(guī)劃問題。
在本節(jié)中,您將看到線性規(guī)劃問題的兩個示例:
您將在下一節(jié)中使用 Python 來解決這兩個問題。
考慮以下線性規(guī)劃問題:
你需要找到X和?使得紅色,藍(lán)色和黃色的不平等,以及不平等X 0和? 0,是滿意的。同時,您的解決方案必須對應(yīng)于z的最大可能值。
您需要找到的自變量(在本例中為 x 和 y )稱為 決策變量 。要最大化或最小化的決策變量的函數(shù)(在本例中為 z) 稱為 目標(biāo)函數(shù) 、 成本函數(shù) 或僅稱為 目標(biāo) 。您需要滿足的 不等式 稱為 不等式約束 。您還可以在稱為 等式約束 的約束中使用方程。
這是您如何可視化問題的方法:
紅線代表的功能2 X + Y = 20,和它上面的紅色區(qū)域示出了紅色不等式不滿足。同樣,藍(lán)線是函數(shù) 4 x + 5 y = 10,藍(lán)色區(qū)域被禁止,因為它違反了藍(lán)色不等式。黃線是 x + 2 y = 2,其下方的黃色區(qū)域是黃色不等式無效的地方。
如果您忽略紅色、藍(lán)色和黃色區(qū)域,則僅保留灰色區(qū)域?;疑珔^(qū)域的每個點都滿足所有約束,是問題的潛在解決方案。該區(qū)域稱為 可行域 ,其點為 可行解 。在這種情況下,有無數(shù)可行的解決方案。
您想最大化z。對應(yīng)于最大z的可行解是 最優(yōu)解 。如果您嘗試最小化目標(biāo)函數(shù),那么最佳解決方案將對應(yīng)于其可行的最小值。
請注意,z是線性的。你可以把它想象成一個三維空間中的平面。這就是為什么最優(yōu)解必須在可行區(qū)域的 頂點 或角上的原因。在這種情況下,最佳解決方案是紅線和藍(lán)線相交的點,稍后您將看到。
有時,可行區(qū)域的整個邊緣,甚至整個區(qū)域,都可以對應(yīng)相同的z值。在這種情況下,您有許多最佳解決方案。
您現(xiàn)在已準(zhǔn)備好使用綠色顯示的附加等式約束來擴(kuò)展問題:
方程式 x + 5 y = 15,以綠色書寫,是新的。這是一個等式約束。您可以通過向上一張圖像添加相應(yīng)的綠線來將其可視化:
現(xiàn)在的解決方案必須滿足綠色等式,因此可行區(qū)域不再是整個灰色區(qū)域。它是綠線從與藍(lán)線的交點到與紅線的交點穿過灰色區(qū)域的部分。后一點是解決方案。
如果插入x的所有值都必須是整數(shù)的要求,那么就會得到一個混合整數(shù)線性規(guī)劃問題,可行解的集合又會發(fā)生變化:
您不再有綠線,只有沿線的x值為整數(shù)的點??尚薪馐腔疑尘吧系木G點,此時最優(yōu)解離紅線最近。
這三個例子說明了 可行的線性規(guī)劃問題 ,因為它們具有有界可行區(qū)域和有限解。
如果沒有解,線性規(guī)劃問題是 不可行的 。當(dāng)沒有解決方案可以同時滿足所有約束時,通常會發(fā)生這種情況。
例如,考慮如果添加約束x + y 1會發(fā)生什么。那么至少有一個決策變量(x或y)必須是負(fù)數(shù)。這與給定的約束x 0 和y 0相沖突。這樣的系統(tǒng)沒有可行的解決方案,因此稱為不可行的。
另一個示例是添加與綠線平行的第二個等式約束。這兩行沒有共同點,因此不會有滿足這兩個約束的解決方案。
一個線性規(guī)劃問題是 無界的 ,如果它的可行區(qū)域是無界,將溶液不是有限。這意味著您的變量中至少有一個不受約束,可以達(dá)到正無窮大或負(fù)無窮大,從而使目標(biāo)也無限大。
例如,假設(shè)您采用上面的初始問題并刪除紅色和黃色約束。從問題中刪除約束稱為 放松 問題。在這種情況下,x和y不會在正側(cè)有界。您可以將它們增加到正無窮大,從而產(chǎn)生無限大的z值。
在前面的部分中,您研究了一個與任何實際應(yīng)用程序無關(guān)的抽象線性規(guī)劃問題。在本小節(jié)中,您將找到與制造業(yè)資源分配相關(guān)的更具體和實用的優(yōu)化問題。
假設(shè)一家工廠生產(chǎn)四種不同的產(chǎn)品,第一種產(chǎn)品的日產(chǎn)量為x ?,第二種產(chǎn)品的產(chǎn)量為x 2,依此類推。目標(biāo)是確定每種產(chǎn)品的利潤最大化日產(chǎn)量,同時牢記以下條件:
數(shù)學(xué)模型可以這樣定義:
目標(biāo)函數(shù)(利潤)在條件 1 中定義。人力約束遵循條件 2。對原材料 A 和 B 的約束可以從條件 3 和條件 4 中通過對每種產(chǎn)品的原材料需求求和得出。
最后,產(chǎn)品數(shù)量不能為負(fù),因此所有決策變量必須大于或等于零。
與前面的示例不同,您無法方便地將其可視化,因為它有四個決策變量。但是,無論問題的維度如何,原理都是相同的。
在本教程中,您將使用兩個Python 包來解決上述線性規(guī)劃問題:
SciPy 設(shè)置起來很簡單。安裝后,您將擁有開始所需的一切。它的子包 scipy.optimize 可用于線性和非線性優(yōu)化。
PuLP 允許您選擇求解器并以更自然的方式表述問題。PuLP 使用的默認(rèn)求解器是COIN-OR Branch and Cut Solver (CBC)。它連接到用于線性松弛的COIN-OR 線性規(guī)劃求解器 (CLP)和用于切割生成的COIN-OR 切割生成器庫 (CGL)。
另一個偉大的開源求解器是GNU 線性規(guī)劃工具包 (GLPK)。一些著名且非常強(qiáng)大的商業(yè)和專有解決方案是Gurobi、CPLEX和XPRESS。
除了在定義問題時提供靈活性和運行各種求解器的能力外,PuLP 使用起來不如 Pyomo 或 CVXOPT 等替代方案復(fù)雜,后者需要更多的時間和精力來掌握。
要學(xué)習(xí)本教程,您需要安裝 SciPy 和 PuLP。下面的示例使用 SciPy 1.4.1 版和 PuLP 2.1 版。
您可以使用pip以下方法安裝兩者:
您可能需要運行pulptest或sudo pulptest啟用 PuLP 的默認(rèn)求解器,尤其是在您使用 Linux 或 Mac 時:
或者,您可以下載、安裝和使用 GLPK。它是免費和開源的,適用于 Windows、MacOS 和 Linux。在本教程的后面部分,您將看到如何將 GLPK(除了 CBC)與 PuLP 一起使用。
在 Windows 上,您可以下載檔案并運行安裝文件。
在 MacOS 上,您可以使用 Homebrew:
在 Debian 和 Ubuntu 上,使用apt來安裝glpk和glpk-utils:
在Fedora,使用dnf具有g(shù)lpk-utils:
您可能還會發(fā)現(xiàn)conda對安裝 GLPK 很有用:
安裝完成后,可以查看GLPK的版本:
有關(guān)詳細(xì)信息,請參閱 GLPK 關(guān)于使用Windows 可執(zhí)行文件和Linux 軟件包進(jìn)行安裝的教程。
在本節(jié)中,您將學(xué)習(xí)如何使用 SciPy優(yōu)化和求根庫進(jìn)行線性規(guī)劃。
要使用 SciPy 定義和解決優(yōu)化問題,您需要導(dǎo)入scipy.optimize.linprog():
現(xiàn)在您已經(jīng)linprog()導(dǎo)入,您可以開始優(yōu)化。
讓我們首先解決上面的線性規(guī)劃問題:
linprog()僅解決最小化(而非最大化)問題,并且不允許具有大于或等于符號 ( ) 的不等式約束。要解決這些問題,您需要在開始優(yōu)化之前修改您的問題:
引入這些更改后,您將獲得一個新系統(tǒng):
該系統(tǒng)與原始系統(tǒng)等效,并且將具有相同的解決方案。應(yīng)用這些更改的唯一原因是克服 SciPy 與問題表述相關(guān)的局限性。
下一步是定義輸入值:
您將上述系統(tǒng)中的值放入適當(dāng)?shù)牧斜?、元組或NumPy 數(shù)組中:
注意:請注意行和列的順序!
約束左側(cè)和右側(cè)的行順序必須相同。每一行代表一個約束。
來自目標(biāo)函數(shù)和約束左側(cè)的系數(shù)的順序必須匹配。每列對應(yīng)一個決策變量。
下一步是以與系數(shù)相同的順序定義每個變量的界限。在這種情況下,它們都在零和正無窮大之間:
此語句是多余的,因為linprog()默認(rèn)情況下采用這些邊界(零到正無窮大)。
注:相反的float("inf"),你可以使用math.inf,numpy.inf或scipy.inf。
最后,是時候優(yōu)化和解決您感興趣的問題了。你可以這樣做linprog():
參數(shù)c是指來自目標(biāo)函數(shù)的系數(shù)。A_ub和b_ub分別與不等式約束左邊和右邊的系數(shù)有關(guān)。同樣,A_eq并b_eq參考等式約束。您可以使用bounds提供決策變量的下限和上限。
您可以使用該參數(shù)method來定義要使用的線性規(guī)劃方法。有以下三種選擇:
linprog() 返回具有以下屬性的數(shù)據(jù)結(jié)構(gòu):
您可以分別訪問這些值:
這就是您獲得優(yōu)化結(jié)果的方式。您還可以以圖形方式顯示它們:
如前所述,線性規(guī)劃問題的最優(yōu)解位于可行區(qū)域的頂點。在這種情況下,可行區(qū)域只是藍(lán)線和紅線之間的綠線部分。最優(yōu)解是代表綠線和紅線交點的綠色方塊。
如果要排除相等(綠色)約束,只需刪除參數(shù)A_eq并b_eq從linprog()調(diào)用中刪除:
解決方案與前一種情況不同。你可以在圖表上看到:
在這個例子中,最優(yōu)解是紅色和藍(lán)色約束相交的可行(灰色)區(qū)域的紫色頂點。其他頂點,如黃色頂點,具有更高的目標(biāo)函數(shù)值。
您可以使用 SciPy 來解決前面部分所述的資源分配問題:
和前面的例子一樣,你需要從上面的問題中提取必要的向量和矩陣,將它們作為參數(shù)傳遞給.linprog(),然后得到結(jié)果:
結(jié)果告訴您最大利潤是1900并且對應(yīng)于x ? = 5 和x ? = 45。在給定條件下生產(chǎn)第二和第四個產(chǎn)品是沒有利潤的。您可以在這里得出幾個有趣的結(jié)論:
opt.statusis0和opt.successis True,說明優(yōu)化問題成功求解,最優(yōu)可行解。
SciPy 的線性規(guī)劃功能主要用于較小的問題。對于更大和更復(fù)雜的問題,您可能會發(fā)現(xiàn)其他庫更適合,原因如下:
幸運的是,Python 生態(tài)系統(tǒng)為線性編程提供了幾種替代解決方案,這些解決方案對于更大的問題非常有用。其中之一是 PuLP,您將在下一節(jié)中看到它的實際應(yīng)用。
PuLP 具有比 SciPy 更方便的線性編程 API。您不必在數(shù)學(xué)上修改您的問題或使用向量和矩陣。一切都更干凈,更不容易出錯。
像往常一樣,您首先導(dǎo)入您需要的內(nèi)容:
現(xiàn)在您已經(jīng)導(dǎo)入了 PuLP,您可以解決您的問題。
您現(xiàn)在將使用 PuLP 解決此系統(tǒng):
第一步是初始化一個實例LpProblem來表示你的模型:
您可以使用該sense參數(shù)來選擇是執(zhí)行最小化(LpMinimize或1,這是默認(rèn)值)還是最大化(LpMaximize或-1)。這個選擇會影響你的問題的結(jié)果。
一旦有了模型,就可以將決策變量定義為LpVariable類的實例:
您需要提供下限,lowBound=0因為默認(rèn)值為負(fù)無窮大。該參數(shù)upBound定義了上限,但您可以在此處省略它,因為它默認(rèn)為正無窮大。
可選參數(shù)cat定義決策變量的類別。如果您使用的是連續(xù)變量,則可以使用默認(rèn)值"Continuous"。
您可以使用變量x和y創(chuàng)建表示線性表達(dá)式和約束的其他 PuLP 對象:
當(dāng)您將決策變量與標(biāo)量相乘或構(gòu)建多個決策變量的線性組合時,您會得到一個pulp.LpAffineExpression代表線性表達(dá)式的實例。
注意:您可以增加或減少變量或表達(dá)式,你可以乘他們常數(shù),因為紙漿類實現(xiàn)一些Python的特殊方法,即模擬數(shù)字類型一樣__add__(),__sub__()和__mul__()。這些方法用于像定制運營商的行為+,-和*。
類似地,您可以將線性表達(dá)式、變量和標(biāo)量與運算符 ==、=以獲取表示模型線性約束的紙漿.LpConstraint實例。
注:也有可能與豐富的比較方法來構(gòu)建的約束.__eq__(),.__le__()以及.__ge__()定義了運營商的行為==,=。
考慮到這一點,下一步是創(chuàng)建約束和目標(biāo)函數(shù)并將它們分配給您的模型。您不需要創(chuàng)建列表或矩陣。只需編寫 Python 表達(dá)式并使用+=運算符將它們附加到模型中:
在上面的代碼中,您定義了包含約束及其名稱的元組。LpProblem允許您通過將約束指定為元組來向模型添加約束。第一個元素是一個LpConstraint實例。第二個元素是該約束的可讀名稱。
設(shè)置目標(biāo)函數(shù)非常相似:
或者,您可以使用更短的符號:
現(xiàn)在您已經(jīng)添加了目標(biāo)函數(shù)并定義了模型。
注意:您可以使用運算符將 約束或目標(biāo)附加到模型中,+=因為它的類LpProblem實現(xiàn)了特殊方法.__iadd__(),該方法用于指定 的行為+=。
對于較大的問題,lpSum()與列表或其他序列一起使用通常比重復(fù)+運算符更方便。例如,您可以使用以下語句將目標(biāo)函數(shù)添加到模型中:
它產(chǎn)生與前一條語句相同的結(jié)果。
您現(xiàn)在可以看到此模型的完整定義:
模型的字符串表示包含所有相關(guān)數(shù)據(jù):變量、約束、目標(biāo)及其名稱。
注意:字符串表示是通過定義特殊方法構(gòu)建的.__repr__()。有關(guān) 的更多詳細(xì)信息.__repr__(),請查看Pythonic OOP 字符串轉(zhuǎn)換:__repr__vs__str__ .
最后,您已準(zhǔn)備好解決問題。你可以通過調(diào)用.solve()你的模型對象來做到這一點。如果要使用默認(rèn)求解器 (CBC),則不需要傳遞任何參數(shù):
.solve()調(diào)用底層求解器,修改model對象,并返回解決方案的整數(shù)狀態(tài),1如果找到了最優(yōu)解。有關(guān)其余狀態(tài)代碼,請參閱LpStatus[]。
你可以得到優(yōu)化結(jié)果作為 的屬性model。該函數(shù)value()和相應(yīng)的方法.value()返回屬性的實際值:
model.objective持有目標(biāo)函數(shù)model.constraints的值,包含松弛變量的值,以及對象x和y具有決策變量的最優(yōu)值。model.variables()返回一個包含決策變量的列表:
如您所見,此列表包含使用 的構(gòu)造函數(shù)創(chuàng)建的確切對象LpVariable。
結(jié)果與您使用 SciPy 獲得的結(jié)果大致相同。
注意:注意這個方法.solve()——它會改變對象的狀態(tài),x并且y!
您可以通過調(diào)用查看使用了哪個求解器.solver:
輸出通知您求解器是 CBC。您沒有指定求解器,因此 PuLP 調(diào)用了默認(rèn)求解器。
如果要運行不同的求解器,則可以將其指定為 的參數(shù).solve()。例如,如果您想使用 GLPK 并且已經(jīng)安裝了它,那么您可以solver=GLPK(msg=False)在最后一行使用。請記住,您還需要導(dǎo)入它:
現(xiàn)在你已經(jīng)導(dǎo)入了 GLPK,你可以在里面使用它.solve():
該msg參數(shù)用于顯示來自求解器的信息。msg=False禁用顯示此信息。如果要包含信息,則只需省略msg或設(shè)置msg=True。
您的模型已定義并求解,因此您可以按照與前一種情況相同的方式檢查結(jié)果:
使用 GLPK 得到的結(jié)果與使用 SciPy 和 CBC 得到的結(jié)果幾乎相同。
一起來看看這次用的是哪個求解器:
正如您在上面用突出顯示的語句定義的那樣model.solve(solver=GLPK(msg=False)),求解器是 GLPK。
您還可以使用 PuLP 來解決混合整數(shù)線性規(guī)劃問題。要定義整數(shù)或二進(jìn)制變量,只需傳遞cat="Integer"或cat="Binary"到LpVariable。其他一切都保持不變:
在本例中,您有一個整數(shù)變量并獲得與之前不同的結(jié)果:
Nowx是一個整數(shù),如模型中所指定。(從技術(shù)上講,它保存一個小數(shù)點后為零的浮點值。)這一事實改變了整個解決方案。讓我們在圖表上展示這一點:
如您所見,最佳解決方案是灰色背景上最右邊的綠點。這是兩者的最大價值的可行的解決方案x和y,給它的最大目標(biāo)函數(shù)值。
GLPK 也能夠解決此類問題。
現(xiàn)在你可以使用 PuLP 來解決上面的資源分配問題:
定義和解決問題的方法與前面的示例相同:
在這種情況下,您使用字典 x來存儲所有決策變量。這種方法很方便,因為字典可以將決策變量的名稱或索引存儲為鍵,將相應(yīng)的LpVariable對象存儲為值。列表或元組的LpVariable實例可以是有用的。
上面的代碼產(chǎn)生以下結(jié)果:
如您所見,該解決方案與使用 SciPy 獲得的解決方案一致。最有利可圖的解決方案是每天生產(chǎn)5.0第一件產(chǎn)品和45.0第三件產(chǎn)品。
讓我們把這個問題變得更復(fù)雜和有趣。假設(shè)由于機(jī)器問題,工廠無法同時生產(chǎn)第一種和第三種產(chǎn)品。在這種情況下,最有利可圖的解決方案是什么?
現(xiàn)在您有另一個邏輯約束:如果x ? 為正數(shù),則x ? 必須為零,反之亦然。這是二元決策變量非常有用的地方。您將使用兩個二元決策變量y ? 和y ?,它們將表示是否生成了第一個或第三個產(chǎn)品:
除了突出顯示的行之外,代碼與前面的示例非常相似。以下是差異:
這是解決方案:
事實證明,最佳方法是排除第一種產(chǎn)品而只生產(chǎn)第三種產(chǎn)品。
就像有許多資源可以幫助您學(xué)習(xí)線性規(guī)劃和混合整數(shù)線性規(guī)劃一樣,還有許多具有 Python 包裝器的求解器可用。這是部分列表:
其中一些庫,如 Gurobi,包括他們自己的 Python 包裝器。其他人使用外部包裝器。例如,您看到可以使用 PuLP 訪問 CBC 和 GLPK。
您現(xiàn)在知道什么是線性規(guī)劃以及如何使用 Python 解決線性規(guī)劃問題。您還了解到 Python 線性編程庫只是本機(jī)求解器的包裝器。當(dāng)求解器完成其工作時,包裝器返回解決方案狀態(tài)、決策變量值、松弛變量、目標(biāo)函數(shù)等。
輸入以下代碼導(dǎo)入我們用到的函數(shù)庫。
import numpy as np
import matplotlib.pyplot as plt
x=np.arange(0,5,0.1);
y=np.sin(x);
plt.plot(x,y)
采用剛才代碼后有可能無法顯示下圖,然后在輸入以下代碼就可以了:
plt.show()
1、點擊鍵盤win+r,打開運行窗口;在窗口中輸入cmd",點擊確定,打開windows命令行窗口。
2、在cmd命令行窗口中輸入"python",進(jìn)入python交互窗口。
3、引入matplotlib模塊的pyplot()函數(shù),并重命名為py;引入numpy模塊,并重命名為np。
4、使用函數(shù)np.arrange(start,end,step)創(chuàng)建變量x的取值范圍,是一個一維數(shù)組,使用y=3*x+1,創(chuàng)建y是與自變量x相對應(yīng)的一維數(shù)組。
5、使用函數(shù)plt.plot(x,y)繪制一元一次函數(shù)y=3x+1的函數(shù)圖像。
6、使用函數(shù)plt.title()給圖像添加標(biāo)題,使用函數(shù)plt.xlabel()給橫軸添加標(biāo)簽,使用函數(shù)plt.ylabel()給縱軸添加標(biāo)簽,使用函數(shù)plt.tick_params()設(shè)置刻度標(biāo)記的大小。
7、使用函數(shù)plt.show()顯示整個一元一次函數(shù)的圖像。
import matplotlib.pyplot as plt
plt.scatter(xdata,ydata)
(xdata,ydata為兩個需要作圖的數(shù)據(jù)集)