:將方程x^4-px^3+q=0移項(xiàng),得
讓客戶滿意是我們工作的目標(biāo),不斷超越客戶的期望值來自于我們對(duì)這個(gè)行業(yè)的熱愛。我們立志把好的技術(shù)通過有效、簡(jiǎn)單的方式提供給客戶,將通過不懈努力成為客戶在信息化領(lǐng)域值得信任、有價(jià)值的長(zhǎng)期合作伙伴,公司提供的服務(wù)項(xiàng)目有:域名注冊(cè)、網(wǎng)頁空間、營(yíng)銷軟件、網(wǎng)站建設(shè)、衢州網(wǎng)站維護(hù)、網(wǎng)站推廣。
x^4+q=px^3
可見,x^4≥0,則x^4+q0,所以px^30,即x0,本題也就是要求出使方程x^4-px^3+q=0有正整數(shù)解的素?cái)?shù)p、q;
且素?cái)?shù)p必定是奇素?cái)?shù),否則是偶素?cái)?shù)的話,那么p=2,則方程成為:x^4+q=2x^3,即q=2x^3-x^4=x^3×(2-x)0,得出2-x0,即x2,則只能是x=1,代入方程:1^4+q=2×1^3,即1+q=2,解得q=1,不是素?cái)?shù),故p必定是奇素?cái)?shù)。
分兩種情形討論:
情形一:當(dāng)x為偶數(shù)時(shí),設(shè)為x=2n,則有
(2n)^4+q=p×(2n)^3
16n^4+q=p×8n^3
上式右端是偶數(shù),則左端的q必須為偶數(shù),否則:左端奇偶相加得奇,不符。
而q作為素?cái)?shù),唯一的偶素?cái)?shù)就是2,即q=2,則上式成為
16n^4+2=p×8n^3
兩邊同時(shí)除以2,得:8n^4+1=p×4n^3,顯然,左端奇偶相加得奇,但右端為偶,矛盾。所以方程無偶整數(shù)解;
情形二:當(dāng)x為奇數(shù)時(shí),設(shè)為x=2n-1,則有
(2n-1)^4+q=p×(2n-1)^3
觀察上式,右端為奇,則左端也必須為奇,而(2n-1)^4是奇,所以得出q必須為偶,故素?cái)?shù)q=2,上式成為:
(2n-1)^4+2=p×(2n-1)^3,整理成:
p(2n-1)^3-(2n-1)^4=(2n-1)^3×[p-(2n-1)]=1×2
由于(2n-1)^3為奇,所以必有:(2n-1)^3=1,解得:n=1;
則:[p-(2n-1)]=2,解得:p=3;
綜上,對(duì)于素?cái)?shù)p、q,方程x^4-px^3+q=0有整數(shù)解,則p、q分別為3和2。
暈,再補(bǔ)一個(gè)!
1:編程實(shí)現(xiàn) 自動(dòng)生成兩個(gè)素?cái)?shù)p,q
2:編程實(shí)現(xiàn) 計(jì)算n=p*q
f(n)=(p-1)(q-1)
3: 隨機(jī)數(shù)e滿足:0ef(n) and f(n)與e互為素?cái)?shù)
4: 編程實(shí)現(xiàn) 計(jì)算d:d=e mod f(n)=1
如要加密m
5:編程實(shí)現(xiàn)計(jì)算c:
加密公式:c=m^e mod n
6:編程實(shí)現(xiàn)解密m:
解密公式:m=c^d mod n
Private Sub Command10_Click()
End
End Sub
Private Sub Command9_Click()
Text1.Text = ""
Text2.Text = ""
Text3.Text = ""
Text4.Text = ""
Text5.Text = ""
Text6.Text = ""
Text7.Text = ""
Text8.Text = ""
Text9.Text = ""
End Sub
Private Sub Command2_Click()
p = Val(Text1.Text)
q = Val(Text2.Text)
Text3.Text = Str$(p * q)
End Sub
Private Sub Command3_Click()
p = Val(Text1.Text)
q = Val(Text2.Text)
Text4.Text = Str$(p - 1) * (q - 1)
End Sub
RSA算法非常簡(jiǎn)單,概述如下:
找兩素?cái)?shù)p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個(gè)數(shù)e,要求滿足et并且e與t互素(就是最大公因數(shù)為1)
取d*e%t==1
這樣最終得到三個(gè)數(shù): n d e
設(shè)消息為數(shù)M (M n)
設(shè)c=(M**d)%n就得到了加密后的消息c
設(shè)m=(c**e)%n則 m == M,從而完成對(duì)c的解密。
注:**表示次方,上面兩式中的d和e可以互換。
在對(duì)稱加密中:
n d兩個(gè)數(shù)構(gòu)成公鑰,可以告訴別人;
n e兩個(gè)數(shù)構(gòu)成私鑰,e自己保留,不讓任何人知道。
給別人發(fā)送的信息使用e加密,只要?jiǎng)e人能用d解開就證明信息是由你發(fā)送的,構(gòu)成了簽名機(jī)制。
別人給你發(fā)送信息時(shí)使用d加密,這樣只有擁有e的你能夠?qū)ζ浣饷堋?/p>
rsa的安全性在于對(duì)于一個(gè)大數(shù)n,沒有有效的方法能夠?qū)⑵浞纸?/p>
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。
二實(shí)踐
接下來我們來一個(gè)實(shí)踐,看看實(shí)際的操作:
找兩個(gè)素?cái)?shù):
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足et并且e和t互素
用perl簡(jiǎn)單窮舉可以獲得滿主 e*d%t ==1的數(shù)d:
C:\Tempperl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847
最終我們獲得關(guān)鍵的
n=2773
d=847
e=63
取消息M=244我們看看
加密:
c=M**d%n = 244**847%2773
用perl的大數(shù)計(jì)算來算一下:
C:\Tempperl -Mbigint -e "print 244**847%2773"
465
即用d對(duì)M加密后獲得加密信息c=465
解密:
我們可以用e來對(duì)加密后的c進(jìn)行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Tempperl -Mbigint -e "print 465**63%2773"
244
即用e對(duì)c解密后獲得m=244 , 該值和原始信息M相等。
三字符串加密
把上面的過程集成一下我們就能實(shí)現(xiàn)一個(gè)對(duì)字符串加密解密的示例了。
每次取字符串中的一個(gè)字符的ascii值作為M進(jìn)行計(jì)算,其輸出為加密后16進(jìn)制
的數(shù)的字符串形式,按3字節(jié)表示,如01F
代碼如下:
#!/usr/bin/perl -w
#RSA 計(jì)算過程學(xué)習(xí)程序編寫的測(cè)試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;
my %RSA_CORE = (n=2773,e=63,d=847); #p=47,q=59
my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_COREsqu6kqw);
print "N=$N D=$D E=$E\n";
sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);
for($i=0;$i length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt-new($c);
$C=$M-copy(); $C-bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}
sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);
for($i=0;$i length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt-new($c);
$C=$M-copy(); $C-bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}
my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV = 1;
print "原始串:",$mess,"\n";
my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";
my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";
#EOF
測(cè)試一下:
C:\Tempperl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:5CB6CD6BC58A7709470AA74A0AA74A0AA74A6C70A46C70A46C70A4
解密串:RSA 娃哈哈哈~~~
C:\Tempperl rsa-test.pl 安全焦點(diǎn)(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(diǎn)(xfocus)
加密串:3393EC12F0A466E0AA9510D025D7BA0712DC3379F47D51C325D67B
解密串:安全焦點(diǎn)(xfocus)
我覺得你的并不是RSA加密解密算法。
在.net的有一個(gè)System.Security.Cryptography的命名空間,里面有一RSACryptoServiceProvider的類用來對(duì)byte進(jìn)行RSA加密解密。
具體例子如下:
using System;
using System.Security.Cryptography;
using System.Text;
class RSACSPSample
{
static void Main()
{
try
{
//Create a UnicodeEncoder to convert between byte array and string.
UnicodeEncoding ByteConverter = new UnicodeEncoding();
//Create byte arrays to hold original, encrypted, and decrypted data.
byte[] dataToEncrypt = ByteConverter.GetBytes("Data to Encrypt");
byte[] encryptedData;
byte[] decryptedData;
//Create a new instance of RSACryptoServiceProvider to generate
//public and private key data.
RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();
//Pass the data to ENCRYPT, the public key information
//(using RSACryptoServiceProvider.ExportParameters(false),
//and a boolean flag specifying no OAEP padding.
encryptedData = RSAEncrypt(dataToEncrypt,RSA.ExportParameters(false), false);
//Pass the data to DECRYPT, the private key information
//(using RSACryptoServiceProvider.ExportParameters(true),
//and a boolean flag specifying no OAEP padding.
decryptedData = RSADecrypt(encryptedData,RSA.ExportParameters(true), false);
//Display the decrypted plaintext to the console.
Console.WriteLine("Decrypted plaintext: {0}", ByteConverter.GetString(decryptedData));
}
catch(ArgumentNullException)
{
//Catch this exception in case the encryption did
//not succeed.
Console.WriteLine("Encryption failed.");
}
}
static public byte[] RSAEncrypt(byte[] DataToEncrypt, RSAParameters RSAKeyInfo, bool DoOAEPPadding)
{
try
{
//Create a new instance of RSACryptoServiceProvider.
RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();
//Import the RSA Key information. This only needs
//toinclude the public key information.
RSA.ImportParameters(RSAKeyInfo);
//Encrypt the passed byte array and specify OAEP padding.
//OAEP padding is only available on Microsoft Windows XP or
//later.
return RSA.Encrypt(DataToEncrypt, DoOAEPPadding);
}
//Catch and display a CryptographicException
//to the console.
catch(CryptographicException e)
{
Console.WriteLine(e.Message);
return null;
}
}
static public byte[] RSADecrypt(byte[] DataToDecrypt, RSAParameters RSAKeyInfo,bool DoOAEPPadding)
{
try
{
//Create a new instance of RSACryptoServiceProvider.
RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();
//Import the RSA Key information. This needs
//to include the private key information.
RSA.ImportParameters(RSAKeyInfo);
//Decrypt the passed byte array and specify OAEP padding.
//OAEP padding is only available on Microsoft Windows XP or
//later.
return RSA.Decrypt(DataToDecrypt, DoOAEPPadding);
}
//Catch and display a CryptographicException
//to the console.
catch(CryptographicException e)
{
Console.WriteLine(e.ToString());
return null;
}
}
}
[Visual Basic]
Try
'Create a new RSACryptoServiceProvider object.
Dim RSA As New RSACryptoServiceProvider()
'Export the key information to an RSAParameters object.
'Pass false to export the public key information or pass
'true to export public and private key information.
Dim RSAParams As RSAParameters = RSA.ExportParameters(False)
Catch e As CryptographicException
'Catch this exception in case the encryption did
'not succeed.
Console.WriteLine(e.Message)
End Try
[C#]
try
{
//Create a new RSACryptoServiceProvider object.
RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();
//Export the key information to an RSAParameters object.
//Pass false to export the public key information or pass
//true to export public and private key information.
RSAParameters RSAParams = RSA.ExportParameters(false);
}
catch(CryptographicException e)
{
//Catch this exception in case the encryption did
//not succeed.
Console.WriteLine(e.Message);
}