真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python數(shù)據(jù)降維函數(shù) python數(shù)組降維

如何用python實(shí)現(xiàn)pca降維

首先2個(gè)包:

創(chuàng)新互聯(lián)建站是一家集網(wǎng)站建設(shè),葉城企業(yè)網(wǎng)站建設(shè),葉城品牌網(wǎng)站建設(shè),網(wǎng)站定制,葉城網(wǎng)站建設(shè)報(bào)價(jià),網(wǎng)絡(luò)營(yíng)銷,網(wǎng)絡(luò)優(yōu)化,葉城網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強(qiáng)企業(yè)競(jìng)爭(zhēng)力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時(shí)我們時(shí)刻保持專業(yè)、時(shí)尚、前沿,時(shí)刻以成就客戶成長(zhǎng)自我,堅(jiān)持不斷學(xué)習(xí)、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實(shí)用型網(wǎng)站。

import?numpy?as?np

from?sklearn.decomposition?import?PCA

然后一個(gè)m x n 的矩陣,n為維度,這里設(shè)為x。

n_components = 12 是自己可以設(shè)的。

pca?=?PCA(n_components=12)

pca.fit(x)

PCA(copy=True,?iterated_power='auto',?n_components=12,?random_state=None,

svd_solver='auto',?tol=0.0,?whiten=False)

float_formatter?=?lambda?x:?"%.2f"?%?x

np.set_printoptions(formatter={'float_kind':float_formatter})

print?'explained?variance?ratio:'

print?pca.explained_variance_ratio_

print?'cumulative?sum:'

print?pca.explained_variance_ratio_.cumsum()

Python LDA降維中不能輸出指定維度(n_components)的新數(shù)據(jù)集

LDA降維后的維度區(qū)間在[1,C-1],C為特征空間的維度,與原始特征數(shù)n無(wú)關(guān),對(duì)于二值分類,最多投影到1維,所以我估計(jì)你是因?yàn)檫@是個(gè)二分類問(wèn)題,所以只能降到一維。

python數(shù)據(jù)分析與應(yīng)用第三章代碼3-5的數(shù)據(jù)哪來(lái)的

savetxt

import numpy as np

i2 = np.eye(2)

np.savetxt("eye.txt", i2)

3.4 讀入CSV文件

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index從0開(kāi)始

3.6.1 算術(shù)平均值

np.mean(c) = np.average(c)

3.6.2 加權(quán)平均值

t = np.arange(len(c))

np.average(c, weights=t)

3.8 極值

np.min(c)

np.max(c)

np.ptp(c) 最大值與最小值的差值

3.10 統(tǒng)計(jì)分析

np.median(c) 中位數(shù)

np.msort(c) 升序排序

np.var(c) 方差

3.12 分析股票收益率

np.diff(c) 可以返回一個(gè)由相鄰數(shù)組元素的差

值構(gòu)成的數(shù)組

returns = np.diff( arr ) / arr[ : -1] #diff返回的數(shù)組比收盤價(jià)數(shù)組少一個(gè)元素

np.std(c) 標(biāo)準(zhǔn)差

對(duì)數(shù)收益率

logreturns = np.diff( np.log(c) ) #應(yīng)檢查輸入數(shù)組以確保其不含有零和負(fù)數(shù)

where 可以根據(jù)指定的條件返回所有滿足條件的數(shù)

組元素的索引值。

posretindices = np.where(returns 0)

np.sqrt(1./252.) 平方根,浮點(diǎn)數(shù)

3.14 分析日期數(shù)據(jù)

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)

print "Dates =", dates

def datestr2num(s):

return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()

# 星期一 0

# 星期二 1

# 星期三 2

# 星期四 3

# 星期五 4

# 星期六 5

# 星期日 6

#output

Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.

1. 2. 3. 4.]

averages = np.zeros(5)

for i in range(5):

indices = np.where(dates == i)

prices = np.take(close, indices) #按數(shù)組的元素運(yùn)算,產(chǎn)生一個(gè)數(shù)組作為輸出。

a = [4, 3, 5, 7, 6, 8]

indices = [0, 1, 4]

np.take(a, indices)

array([4, 3, 6])

np.argmax(c) #返回的是數(shù)組中最大元素的索引值

np.argmin(c)

3.16 匯總數(shù)據(jù)

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

#得到第一個(gè)星期一和最后一個(gè)星期五

first_monday = np.ravel(np.where(dates == 0))[0]

last_friday = np.ravel(np.where(dates == 4))[-1]

#創(chuàng)建一個(gè)數(shù)組,用于存儲(chǔ)三周內(nèi)每一天的索引值

weeks_indices = np.arange(first_monday, last_friday + 1)

#按照每個(gè)子數(shù)組5個(gè)元素,用split函數(shù)切分?jǐn)?shù)組

weeks_indices = np.split(weeks_indices, 5)

#output

[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]

weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)

def summarize(a, o, h, l, c): #open, high, low, close

monday_open = o[a[0]]

week_high = np.max( np.take(h, a) )

week_low = np.min( np.take(l, a) )

friday_close = c[a[-1]]

return("APPL", monday_open, week_high, week_low, friday_close)

np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的數(shù)組名、分隔符(在這個(gè)例子中為英文標(biāo)點(diǎn)逗號(hào))以及存儲(chǔ)浮點(diǎn)數(shù)的格式。

0818b9ca8b590ca3270a3433284dd417.png

格式字符串以一個(gè)百分號(hào)開(kāi)始。接下來(lái)是一個(gè)可選的標(biāo)志字符:-表示結(jié)果左對(duì)齊,0表示左端補(bǔ)0,+表示輸出符號(hào)(正號(hào)+或負(fù)號(hào)-)。第三部分為可選的輸出寬度參數(shù),表示輸出的最小位數(shù)。第四部分是精度格式符,以”.”開(kāi)頭,后面跟一個(gè)表示精度的整數(shù)。最后是一個(gè)類型指定字符,在例子中指定為字符串類型。

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)

def my_func(a):

... """Average first and last element of a 1-D array"""

... return (a[0] + a[-1]) * 0.5

b = np.array([[1,2,3], [4,5,6], [7,8,9]])

np.apply_along_axis(my_func, 0, b) #沿著X軸運(yùn)動(dòng),取列切片

array([ 4., 5., 6.])

np.apply_along_axis(my_func, 1, b) #沿著y軸運(yùn)動(dòng),取行切片

array([ 2., 5., 8.])

b = np.array([[8,1,7], [4,3,9], [5,2,6]])

np.apply_along_axis(sorted, 1, b)

array([[1, 7, 8],

[3, 4, 9],

[2, 5, 6]])

3.20 計(jì)算簡(jiǎn)單移動(dòng)平均線

(1) 使用ones函數(shù)創(chuàng)建一個(gè)長(zhǎng)度為N的元素均初始化為1的數(shù)組,然后對(duì)整個(gè)數(shù)組除以N,即可得到權(quán)重。如下所示:

N = int(sys.argv[1])

weights = np.ones(N) / N

print "Weights", weights

在N = 5時(shí),輸出結(jié)果如下:

Weights [ 0.2 0.2 0.2 0.2 0.2] #權(quán)重相等

(2) 使用這些權(quán)重值,調(diào)用convolve函數(shù):

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1] #卷積是分析數(shù)學(xué)中一種重要的運(yùn)算,定義為一個(gè)函數(shù)與經(jīng)過(guò)翻轉(zhuǎn)和平移的另一個(gè)函數(shù)的乘積的積分。

t = np.arange(N - 1, len(c)) #作圖

plot(t, c[N-1:], lw=1.0)

plot(t, sma, lw=2.0)

show()

3.22 計(jì)算指數(shù)移動(dòng)平均線

指數(shù)移動(dòng)平均線(exponential moving average)。指數(shù)移動(dòng)平均線使用的權(quán)重是指數(shù)衰減的。對(duì)歷史上的數(shù)據(jù)點(diǎn)賦予的權(quán)重以指數(shù)速度減小,但永遠(yuǎn)不會(huì)到達(dá)0。

x = np.arange(5)

print "Exp", np.exp(x)

#output

Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]

Linspace 返回一個(gè)元素值在指定的范圍內(nèi)均勻分布的數(shù)組。

print "Linspace", np.linspace(-1, 0, 5) #起始值、終止值、可選的元素個(gè)數(shù)

#output

Linspace [-1. -0.75 -0.5 -0.25 0. ]

(1)權(quán)重計(jì)算

N = int(sys.argv[1])

weights = np.exp(np.linspace(-1. , 0. , N))

(2)權(quán)重歸一化處理

weights /= weights.sum()

print "Weights", weights

#output

Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]

(3)計(jì)算及作圖

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

ema = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, ema, lw=2.0)

show()

3.26 用線性模型預(yù)測(cè)價(jià)格

(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系數(shù)向量x、一個(gè)殘差數(shù)組、A的秩以及A的奇異值

print x, residuals, rank, s

#計(jì)算下一個(gè)預(yù)測(cè)值

print np.dot(b, x)

3.28 繪制趨勢(shì)線

x = np.arange(6)

x = x.reshape((2, 3))

x

array([[0, 1, 2], [3, 4, 5]])

np.ones_like(x) #用1填充數(shù)組

array([[1, 1, 1], [1, 1, 1]])

類似函數(shù)

zeros_like

empty_like

zeros

ones

empty

3.30 數(shù)組的修剪和壓縮

a = np.arange(5)

print "a =", a

print "Clipped", a.clip(1, 2) #將所有比給定最大值還大的元素全部設(shè)為給定的最大值,而所有比給定最小值還小的元素全部設(shè)為給定的最小值

#output

a = [0 1 2 3 4]

Clipped [1 1 2 2 2]

a = np.arange(4)

print a

print "Compressed", a.compress(a 2) #返回一個(gè)根據(jù)給定條件篩選后的數(shù)組

#output

[0 1 2 3]

Compressed [3]

b = np.arange(1, 9)

print "b =", b

print "Factorial", b.prod() #輸出數(shù)組元素階乘結(jié)果

#output

b = [1 2 3 4 5 6 7 8]

Factorial 40320

print "Factorials", b.cumprod()

#output

python 數(shù)據(jù)降維程序請(qǐng)教

def dict_f(f): d={} for line in f: l = line.strip("\n").split(" ") d[l[0]] = l[1:] return ddef result(d_c,d_a,cookn): app,game,shoot,apply,function,iq=0,0,0,0,0,0 app = len(d_c[cookn]) for i in d_c[cookn]: for ii in d_a[i]: if (ii=="game"): game= game+1 elif(ii=="shoot"): shoot = shoot +1 elif(ii=="apply"): apply = apply +1 elif(ii=="function"): function = function +1 elif(ii=="iq"): iq = iq +1 else: pass return (app,game,shoot,apply,function,iq) f = open("cookie.txt","r+") #行首沒(méi)有空格,每個(gè)單詞之間有且僅有一個(gè)空格d_c = dict_f(f) f1 = open("app.txt","r+")#行首沒(méi)有空格,每個(gè)單詞之間有且僅有一個(gè)空格d_a = dict_f(f1)l_c = d_c.keys()l=[i for i in sorted(l_c) if(i!="") ]for i in l: print i+" "+"app=%d game=%d shoot=%d apply=%d function=%d iq=%d"%result(d_c,d_a,i)#print 可以改寫輸入到文件中

python如何減小維度

ravel():將多維數(shù)組拉平(一維)。

flatten():將多維數(shù)組拉平,并拷貝一份。

squeeze():除去多維數(shù)組中,維數(shù)為1的維度,如315降維后3*5。

reshape(-1):多維數(shù)組,拉平。

reshape(-1,5):其中-1表示我們不用親自去指定這一維度的大小,理解為n維。

python學(xué)習(xí)網(wǎng),大量的免費(fèi)python視頻教程,歡迎在線學(xué)習(xí)!


本文標(biāo)題:python數(shù)據(jù)降維函數(shù) python數(shù)組降維
鏈接分享:http://weahome.cn/article/hijhgc.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部