真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

nosql分區(qū)表,nosql數(shù)據(jù)庫的分類

nosql是什么

NoSQL,泛指非關系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應用難題。

徽縣網(wǎng)站制作公司哪家好,找創(chuàng)新互聯(lián)!從網(wǎng)頁設計、網(wǎng)站建設、微信開發(fā)、APP開發(fā)、自適應網(wǎng)站建設等網(wǎng)站項目制作,到程序開發(fā),運營維護。創(chuàng)新互聯(lián)從2013年成立到現(xiàn)在10年的時間,我們擁有了豐富的建站經(jīng)驗和運維經(jīng)驗,來保證我們的工作的順利進行。專注于網(wǎng)站建設就選創(chuàng)新互聯(lián)。

雖然NoSQL流行語火起來才短短一年的時間,但是不可否認,現(xiàn)在已經(jīng)開始了第二代運動。盡管早期的堆棧代碼只能算是一種實驗,然而現(xiàn)在的系統(tǒng)已經(jīng)更加的成熟、穩(wěn)定。不過現(xiàn)在也面臨著一個嚴酷的事實:技術越來越成熟——以至于原來很好的NoSQL數(shù)據(jù)存儲不得不進行重寫,也有少數(shù)人認為這就是所謂的2.0版本。這里列出一些比較知名的工具,可以為大數(shù)據(jù)建立快速、可擴展的存儲庫。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護者們提倡運用非關系型的數(shù)據(jù)存儲,相對于鋪天蓋地的關系型數(shù)據(jù)庫運用,這一概念無疑是一種全新的思維的注入。

對于NoSQL并沒有一個明確的范圍和定義,但是他們都普遍存在下面一些共同特征:

不需要預定義模式:不需要事先定義數(shù)據(jù)模式,預定義表結構。數(shù)據(jù)中的每條記錄都可能有不同的屬性和格式。當插入數(shù)據(jù)時,并不需要預先定義它們的模式。

無共享架構:相對于將所有數(shù)據(jù)存儲的存儲區(qū)域網(wǎng)絡中的全共享架構。NoSQL往往將數(shù)據(jù)劃分后存儲在各個本地服務器上。因為從本地磁盤讀取數(shù)據(jù)的性能往往好于通過網(wǎng)絡傳輸讀取數(shù)據(jù)的性能,從而提高了系統(tǒng)的性能。

彈性可擴展:可以在系統(tǒng)運行的時候,動態(tài)增加或者刪除結點。不需要停機維護,數(shù)據(jù)可以自動遷移。

分區(qū):相對于將數(shù)據(jù)存放于同一個節(jié)點,NoSQL數(shù)據(jù)庫需要將數(shù)據(jù)進行分區(qū),將記錄分散在多個節(jié)點上面。并且通常分區(qū)的同時還要做復制。這樣既提高了并行性能,又能保證沒有單點失效的問題。

異步復制:和RAID存儲系統(tǒng)不同的是,NoSQL中的復制,往往是基于日志的異步復制。這樣,數(shù)據(jù)就可以盡快地寫入一個節(jié)點,而不會被網(wǎng)絡傳輸引起遲延。缺點是并不總是能保證一致性,這樣的方式在出現(xiàn)故障的時候,可能會丟失少量的數(shù)據(jù)。

BASE:相對于事務嚴格的ACID特性,NoSQL數(shù)據(jù)庫保證的是BASE特性。BASE是最終一致性和軟事務。

NoSQL數(shù)據(jù)庫并沒有一個統(tǒng)一的架構,兩種NoSQL數(shù)據(jù)庫之間的不同,甚至遠遠超過兩種關系型數(shù)據(jù)庫的不同。可以說,NoSQL各有所長,成功的NoSQL必然特別適用于某些場合或者某些應用,在這些場合中會遠遠勝過關系型數(shù)據(jù)庫和其他的NoSQL。

什么是nosql數(shù)據(jù)庫?nosql和rdbms有什么區(qū)別

1 理解ACID與BASE的區(qū)別(ACID是關系型數(shù)據(jù)庫強一致性的四個要求,而BASE是NoSQL數(shù)據(jù)庫通常對可用性及一致性的弱要求原則,它們的意思分別是,ACID:atomicity, consistency, isolation, durability;BASE:Basically Available, Soft-state, Eventually Consistent。同時有意思的是ACID在英語里意為酸,BASE意思為堿)

2 理解持久化與非持久化的區(qū)別。這么說是因為有的NoSQL系統(tǒng)是純內(nèi)存存儲的。

3 你必須意識到傳統(tǒng)有關系型數(shù)據(jù)庫與NoSQL系統(tǒng)在數(shù)據(jù)結構上的本質(zhì)區(qū)別。傳統(tǒng)關系型數(shù)據(jù)庫通常是基于行的表格型存儲,而NoSQL系統(tǒng)包括了列式存儲(Cassandra)、key/value存儲(Memcached)、文檔型存儲(CouchDB)以及圖結構存儲(Neo4j)

4與傳統(tǒng)關系數(shù)據(jù)庫有統(tǒng)一的SQL語言操作接口不同,NoSQL系統(tǒng)通常有自己特有的API接口。

5 在架構上,你必須搞清楚,NoSQL系統(tǒng)是被設計用于成百上千臺機器的集群中的,而非共享型數(shù)據(jù)庫系統(tǒng)的架構。

6在NoSQL系統(tǒng)中,可能你得習慣一下不知道你的數(shù)據(jù)具體存在何處的情況。

7 在NoSQL系統(tǒng)中,你最好習慣它的弱一致性?!眅ventually consistent”(最終一致性)正是BASE原則中的重要一項。比如在Twitter,你在Followers列表中經(jīng)常會感受到數(shù)據(jù)的延遲。

8 在NoSQL系統(tǒng)中,你要理解,很多時候數(shù)據(jù)并不總是可用的。

9 你得理解,有的方案是擁有分區(qū)容忍性的,有的方案不一定有。

分庫分表技術及技術方案

一、分庫分表的必要性

分庫分表技術的使用,主要是數(shù)據(jù)庫產(chǎn)生了瓶頸,如單庫的并發(fā)訪問或單表的查詢都超出了閾值。對系統(tǒng)使用造成一定的影響,不得已而產(chǎn)生的技術。

通過分庫分表技術來解決此類問題,但正因為使用此技術,會產(chǎn)生ACID一系列的問題,各類中間件解決此類問題各有各的優(yōu)勢。

提示:如場景無必要,千萬不要使用分庫分表。

二、分庫分表的思路

1、垂直區(qū)分

垂直分庫:從業(yè)務角度,一個庫分成多個庫,如把訂單和用戶信息分成兩個庫來存儲。這樣的好處就是可以微服務了。每塊的業(yè)務單獨部署,互不影響,通過接口去調(diào)用。

垂直分表:把大表分成多個小表,如熱點數(shù)據(jù)和非熱點數(shù)據(jù)分開,提高查詢速度。

2、水平區(qū)分

水平分表:同一業(yè)務如數(shù)據(jù)量大了以后,根據(jù)一定的規(guī)則分為不同的表進行存儲。

水平分庫:如訂單分成多個庫存儲,分解服務器壓力。

以上一般來說,垂直分庫和水平分表用的會多些。

三、分庫分表的原理分析

分庫分表常用的方案:Hash取模方案和range范圍方案;

路由算法為最主要的算法,指得是把路由的Key按照指定的算法進行存放;

1、Hash取模方案

根據(jù)取余分配到不同的表里。要根據(jù)實際情況確認模的大小。此方案由于平均分配,不存在熱點問題,但數(shù)據(jù)遷移很復雜。

2、Range范圍方案

range根據(jù)范圍進行劃分,如日期,大小。此方案不存在數(shù)據(jù)遷移,但存在熱點問題。

四、分庫分表的技術選型

1、技術選型

解決方案主要分為4種:MySQL的分區(qū)技術、NoSql、NewSQL、MySQL的分庫分表。

(1)mysql分區(qū)技術:把一張表存放在不同存儲文件。由于無法負載,使用較少。

(2)NoSQL(如MongoDB):如是訂單等比較重要數(shù)據(jù),強關聯(lián)關系,需約束一致性,不太適應。

(3)NewSql(具有NoSQL對海量數(shù)據(jù)的存儲管理能力,還保持了傳統(tǒng)數(shù)據(jù)庫支持ACID和SQL等特性):如TiDB可滿足需求。

(4)MySQL的分庫分表:如使用mysql,此種方案為主流方式。

2、中間件

解決此類問題的中間件主要為:Proxy模式、Client模式。

(1)Proxy模式

(2)Client模式

把分庫分表相關邏輯存放在客戶端,一版客戶端的應用會引用一個jar,然后再jar中處理SQL組合、數(shù)據(jù)庫路由、執(zhí)行結果合并等相關功能。

(3)中間件的比較

由于Client模式少了一層,運維方便,相對來說容易些。

五、分庫分表的實踐

根據(jù)容量(當前容量和增長量)評估分庫或分表個數(shù) - 選key(均勻)- 分表規(guī)則(hash或range等)- 執(zhí)行(一般雙寫)- 擴容問題(盡量減少數(shù)據(jù)的移動)。

在這里我們選用中間件share-jdbc。

1、引入maven依賴

2、spring boot規(guī)則配置

行表達式標識符可以使用${...}或$-{...},但前者與Spring本身的屬性文件占位符沖突,因此在Spring環(huán)境中使用行表達式標識符建議使用$-{...}。

3、創(chuàng)建DataSource

通過ShardingDataSourceFactory工廠和規(guī)則配置對象獲取ShardingDataSource,ShardingDataSource實現(xiàn)自JDBC的標準接口DataSource。然后即可通過DataSource選擇使用原生JDBC開發(fā),或者使用JPA, MyBatis等ORM工具。

MySQL數(shù)據(jù)庫性能優(yōu)化之分區(qū)分表分庫

分表是分散數(shù)據(jù)庫壓力的好方法。

分表,最直白的意思,就是將一個表結構分為多個表,然后,可以再同一個庫里,也可以放到不同的庫。

當然,首先要知道什么情況下,才需要分表。個人覺得單表記錄條數(shù)達到百萬到千萬級別時就要使用分表了。

分表的分類

**1、縱向分表**

將本來可以在同一個表的內(nèi)容,人為劃分為多個表。(所謂的本來,是指按照關系型數(shù)據(jù)庫的第三范式要求,是應該在同一個表的。)

分表理由:根據(jù)數(shù)據(jù)的活躍度進行分離,(因為不同活躍的數(shù)據(jù),處理方式是不同的)

案例:

對于一個博客系統(tǒng),文章標題,作者,分類,創(chuàng)建時間等,是變化頻率慢,查詢次數(shù)多,而且最好有很好的實時性的數(shù)據(jù),我們把它叫做冷數(shù)據(jù)。而博客的瀏覽量,回復數(shù)等,類似的統(tǒng)計信息,或者別的變化頻率比較高的數(shù)據(jù),我們把它叫做活躍數(shù)據(jù)。所以,在進行數(shù)據(jù)庫結構設計的時候,就應該考慮分表,首先是縱向分表的處理。

這樣縱向分表后:

首先存儲引擎的使用不同,冷數(shù)據(jù)使用MyIsam 可以有更好的查詢數(shù)據(jù)?;钴S數(shù)據(jù),可以使用Innodb ,可以有更好的更新速度。

其次,對冷數(shù)據(jù)進行更多的從庫配置,因為更多的操作時查詢,這樣來加快查詢速度。對熱數(shù)據(jù),可以相對有更多的主庫的橫向分表處理。

其實,對于一些特殊的活躍數(shù)據(jù),也可以考慮使用memcache ,redis之類的緩存,等累計到一定量再去更新數(shù)據(jù)庫?;蛘適ongodb 一類的nosql 數(shù)據(jù)庫,這里只是舉例,就先不說這個。

**2、橫向分表**

字面意思,就可以看出來,是把大的表結構,橫向切割為同樣結構的不同表,如,用戶信息表,user_1,user_2等。表結構是完全一樣,但是,根據(jù)某些特定的規(guī)則來劃分的表,如根據(jù)用戶ID來取模劃分。

分表理由:根據(jù)數(shù)據(jù)量的規(guī)模來劃分,保證單表的容量不會太大,從而來保證單表的查詢等處理能力。

案例:同上面的例子,博客系統(tǒng)。當博客的量達到很大時候,就應該采取橫向分割來降低每個單表的壓力,來提升性能。例如博客的冷數(shù)據(jù)表,假如分為100個表,當同時有100萬個用戶在瀏覽時,如果是單表的話,會進行100萬次請求,而現(xiàn)在分表后,就可能是每個表進行1萬個數(shù)據(jù)的請求(因為,不可能絕對的平均,只是假設),這樣壓力就降低了很多很多。

延伸:為什么要分表和分區(qū)?

日常開發(fā)中我們經(jīng)常會遇到大表的情況,所謂的大表是指存儲了百萬級乃至千萬級條記錄的表。這樣的表過于龐大,導致數(shù)據(jù)庫在查詢和插入的時候耗時太長,性能低下,如果涉及聯(lián)合查詢的情況,性能會更加糟糕。分表和表分區(qū)的目的就是減少數(shù)據(jù)庫的負擔,提高數(shù)據(jù)庫的效率,通常點來講就是提高表的增刪改查效率。

什么是分表?

分表是將一個大表按照一定的規(guī)則分解成多張具有獨立存儲空間的實體表,我們可以稱為子表,每個表都對應三個文件,MYD數(shù)據(jù)文件,.MYI索引文件,.frm表結構文件。這些子表可以分布在同一塊磁盤上,也可以在不同的機器上。app讀寫的時候根據(jù)事先定義好的規(guī)則得到對應的子表名,然后去操作它。

什么是分區(qū)?

分區(qū)和分表相似,都是按照規(guī)則分解表。不同在于分表將大表分解為若干個獨立的實體表,而分區(qū)是將數(shù)據(jù)分段劃分在多個位置存放,可以是同一塊磁盤也可以在不同的機器。分區(qū)后,表面上還是一張表,但數(shù)據(jù)散列到多個位置了。app讀寫的時候操作的還是大表名字,db自動去組織分區(qū)的數(shù)據(jù)。

**MySQL分表和分區(qū)有什么聯(lián)系呢?**

1、都能提高mysql的性高,在高并發(fā)狀態(tài)下都有一個良好的表現(xiàn)。

2、分表和分區(qū)不矛盾,可以相互配合的,對于那些大訪問量,并且表數(shù)據(jù)比較多的表,我們可以采取分表和分區(qū)結合的方式(如果merge這種分表方式,不能和分區(qū)配合的話,可以用其他的分表試),訪問量不大,但是表數(shù)據(jù)很多的表,我們可以采取分區(qū)的方式等。

3、分表技術是比較麻煩的,需要手動去創(chuàng)建子表,app服務端讀寫時候需要計算子表名。采用merge好一些,但也要創(chuàng)建子表和配置子表間的union關系。

4、表分區(qū)相對于分表,操作方便,不需要創(chuàng)建子表。

我們知道對于大型的互聯(lián)網(wǎng)應用,數(shù)據(jù)庫單表的數(shù)據(jù)量可能達到千萬甚至上億級別,同時面臨這高并發(fā)的壓力。Master-Slave結構只能對數(shù)據(jù)庫的讀能力進行擴展,寫操作還是集中在Master中,Master并不能無限制的掛接Slave庫,如果需要對數(shù)據(jù)庫的吞吐能力進行進一步的擴展,可以考慮采用分庫分表的策略。

**1、分表**

在分表之前,首先要選中合適的分表策略(以哪個字典為分表字段,需要將數(shù)據(jù)分為多少張表),使數(shù)據(jù)能夠均衡的分布在多張表中,并且不影響正常的查詢。在企業(yè)級應用中,往往使用org_id(組織主鍵)做為分表字段,在互聯(lián)網(wǎng)應用中往往是userid。在確定分表策略后,當數(shù)據(jù)進行存儲及查詢時,需要確定到哪張表里去查找數(shù)據(jù),

數(shù)據(jù)存放的數(shù)據(jù)表 = 分表字段的內(nèi)容 % 分表數(shù)量

**2、分庫**

分表能夠解決單表數(shù)據(jù)量過大帶來的查詢效率下降的問題,但是不能給數(shù)據(jù)庫的并發(fā)訪問帶來質(zhì)的提升,面對高并發(fā)的寫訪問,當Master無法承擔高并發(fā)的寫入請求時,不管如何擴展Slave服務器,都沒有意義了。我們通過對數(shù)據(jù)庫進行拆分,來提高數(shù)據(jù)庫的寫入能力,即所謂的分庫。分庫采用對關鍵字取模的方式,對數(shù)據(jù)庫進行路由。

數(shù)據(jù)存放的數(shù)據(jù)庫=分庫字段的內(nèi)容%數(shù)據(jù)庫的數(shù)量

**3、即分表又分庫**

數(shù)據(jù)庫分表可以解決單表海量數(shù)據(jù)的查詢性能問題,分庫可以解決單臺數(shù)據(jù)庫的并發(fā)訪問壓力問題。

當數(shù)據(jù)庫同時面臨海量數(shù)據(jù)存儲和高并發(fā)訪問的時候,需要同時采取分表和分庫策略。一般分表分庫策略如下:

中間變量 = 關鍵字%(數(shù)據(jù)庫數(shù)量*單庫數(shù)據(jù)表數(shù)量)

庫 = 取整(中間變量/單庫數(shù)據(jù)表數(shù)量)

表 = (中間變量%單庫數(shù)據(jù)表數(shù)量)

實例:

1、分庫分表

很明顯,一個主表(也就是很重要的表,例如用戶表)無限制的增長勢必嚴重影響性能,分庫與分表是一個很不錯的解決途徑,也就是性能優(yōu)化途徑,現(xiàn)在的案例是我們有一個1000多萬條記錄的用戶表members,查詢起來非常之慢,同事的做法是將其散列到100個表中,分別從members0到members99,然后根據(jù)mid分發(fā)記錄到這些表中,牛逼的代碼大概是這樣子:

復制代碼 代碼如下:

?php

for($i=0;$i 100; $i++ ){

//echo "CREATE TABLE db2.members{$i} LIKE db1.members

";

echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}

";

}

?

2、不停機修改mysql表結構

同樣還是members表,前期設計的表結構不盡合理,隨著數(shù)據(jù)庫不斷運行,其冗余數(shù)據(jù)也是增長巨大,同事使用了下面的方法來處理:

先創(chuàng)建一個臨時表:

/*創(chuàng)建臨時表*/

CREATE TABLE members_tmp LIKE members

然后修改members_tmp的表結構為新結構,接著使用上面那個for循環(huán)來導出數(shù)據(jù),因為1000萬的數(shù)據(jù)一次性導出是不對的,mid是主鍵,一個區(qū)間一個區(qū)間的導,基本是一次導出5萬條吧,這里略去了

接著重命名將新表替換上去:

/*這是個頗為經(jīng)典的語句哈*/

RENAME TABLE members TO members_bak,members_tmp TO members;

就是這樣,基本可以做到無損失,無需停機更新表結構,但實際上RENAME期間表是被鎖死的,所以選擇在線少的時候操作是一個技巧。經(jīng)過這個操作,使得原先8G多的表,一下子變成了2G多。

什么是NoSQL數(shù)據(jù)庫?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,

泛指非關系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應用難題,包括超大規(guī)模數(shù)據(jù)的存儲。

(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 關系型數(shù)據(jù)庫與NoSQL的區(qū)別?

3.1 RDBMS

高度組織化結構化數(shù)據(jù)

結構化查詢語言(SQL)

數(shù)據(jù)和關系都存儲在單獨的表中。

數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言

嚴格的一致性

基礎事務

ACID

關系型數(shù)據(jù)庫遵循ACID規(guī)則

事務在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:

A (Atomicity) 原子性

原子性很容易理解,也就是說事務里的所有操作要么全部做完,要么都不做,事務成功的條件是事務里的所有操作都成功,只要有一個操作失敗,整個事務就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。

C (Consistency) 一致性

一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務的運行不會改變數(shù)據(jù)庫原本的一致性約束。

I (Isolation) 獨立性

所謂的獨立性是指并發(fā)的事務之間不會互相影響,如果一個事務要訪問的數(shù)據(jù)正在被另外一個事務修改,只要另外一個事務未提交,它所訪問的數(shù)據(jù)就不受未提交事務的影響。比如現(xiàn)有有個交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事務提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機也不會丟失。

3.2 NoSQL

代表著不僅僅是SQL

沒有聲明性查詢語言

沒有預定義的模式

鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫

最終一致性,而非ACID屬性

非結構化和不可預知的數(shù)據(jù)

CAP定理

高性能,高可用性和可伸縮性

分布式數(shù)據(jù)庫中的CAP原理(了解)

CAP定理:

Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的

Availability(可用性), 好的響應性能

Partition tolerance(分區(qū)容錯性) 可靠性

P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運作。

定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。

CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,

因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:

CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴展性上不太強大。

CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。

AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐σ恢滦砸蟮鸵恍?/p>

CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。

而由于當前的網(wǎng)絡硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。

所以我們只能在一致性和可用性之間進行權衡,沒有NoSQL系統(tǒng)能同時保證這三點。

說明:C:強一致性 A:高可用性 P:分布式容忍性

舉例:

CA:傳統(tǒng)Oracle數(shù)據(jù)庫

AP:大多數(shù)網(wǎng)站架構的選擇

CP:Redis、Mongodb

注意:分布式架構的時候必須做出取舍。

一致性和可用性之間取一個平衡。多余大多數(shù)web應用,其實并不需要強一致性。

因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。

4. 當下NoSQL的經(jīng)典應用

當下的應用是 SQL 與 NoSQL 一起使用的。

代表項目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型機,很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設備,也很貴的。

難點:

數(shù)據(jù)類型多樣性。

數(shù)據(jù)源多樣性和變化重構。

數(shù)據(jù)源改造而服務平臺不需要大面積重構。

一、NoSQL數(shù)據(jù)庫簡介

Web1.0的時代,數(shù)據(jù)訪問量很有限,用一夫當關的高性能的單點服務器可以解決大部分問題。

隨著Web2.0的時代的到來,用戶訪問量大幅度提升,同時產(chǎn)生了大量的用戶數(shù)據(jù)。加上后來的智能移動設備的普及,所有的互聯(lián)網(wǎng)平臺都面臨了巨大的性能挑戰(zhàn)。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關系型的數(shù)據(jù)庫。

NoSQL 不依賴業(yè)務邏輯方式存儲,而以簡單的key-value模式存儲。因此大大的增加了數(shù)據(jù)庫的擴展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式數(shù)據(jù)庫 列式數(shù)據(jù)庫 Hbase Hbase

HBase是Hadoop項目中的數(shù)據(jù)庫。它用于需要對大量的數(shù)據(jù)進行隨機、實時的讀寫操作的場景中。

HBase的目標就是處理數(shù)據(jù)量非常龐大的表,可以用普通的計算機處理超過10億行數(shù)據(jù),還可處理有數(shù)百萬列元素的數(shù)據(jù)表。

Cassandra Cassandra

Apache Cassandra是一款免費的開源NoSQL數(shù)據(jù)庫,其設計目的在于管理由大量商用服務器構建起來的龐大集群上的海量數(shù)據(jù)集(數(shù)據(jù)量通常達到PB級別)。在眾多顯著特性當中,Cassandra最為卓越的長處是對寫入及讀取操作進行規(guī)模調(diào)整,而且其不強調(diào)主集群的設計思路能夠以相對直觀的方式簡化各集群的創(chuàng)建與擴展流程。

主要應用:社會關系,公共交通網(wǎng)絡,地圖及網(wǎng)絡拓譜(n*(n-1)/2)


網(wǎng)頁題目:nosql分區(qū)表,nosql數(shù)據(jù)庫的分類
文章路徑:http://weahome.cn/article/hoedso.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部