1、首先你得搞清楚建設(shè)數(shù)倉的目的是什么
創(chuàng)新互聯(lián)服務項目包括港北網(wǎng)站建設(shè)、港北網(wǎng)站制作、港北網(wǎng)頁制作以及港北網(wǎng)絡營銷策劃等。多年來,我們專注于互聯(lián)網(wǎng)行業(yè),利用自身積累的技術(shù)優(yōu)勢、行業(yè)經(jīng)驗、深度合作伙伴關(guān)系等,向廣大中小型企業(yè)、政府機構(gòu)等提供互聯(lián)網(wǎng)行業(yè)的解決方案,港北網(wǎng)站推廣取得了明顯的社會效益與經(jīng)濟效益。目前,我們服務的客戶以成都為中心已經(jīng)輻射到港北省份的部分城市,未來相信會繼續(xù)擴大服務區(qū)域并繼續(xù)獲得客戶的支持與信任!
是偏向于整合各系統(tǒng)數(shù)據(jù),為數(shù)據(jù)分析決策服務,還是偏向于快速的完成分析決策需求?
如果是前者,那么在數(shù)據(jù)倉庫建模的時候一般會選擇ER建模方法;
如果是后者,一般會選擇維度建模方法。
ER建模:即實體關(guān)系建模,由數(shù)據(jù)倉庫之父BIll Inmon提出,核心思想是從全企業(yè)的高度去設(shè)計三范式模型,用實體關(guān)系描述企業(yè)服務。主張的是自上而下的架構(gòu),將不同的OLTP數(shù)據(jù)集中到面向主題的數(shù)據(jù)倉庫中。
維度建模:由Kimball提出,核心思想是從分析決策的需求出發(fā)構(gòu)建模型。這種模型由事實表和維表組成,即星型模型和雪花模型。Kimball倡導自下而上的架構(gòu),可以針對獨立部門建立數(shù)據(jù)集市,再遞增的構(gòu)建,匯總成數(shù)據(jù)倉庫。
2、其次你得進行深入的業(yè)務調(diào)研和數(shù)據(jù)調(diào)研
業(yè)務調(diào)研:深入的業(yè)務調(diào)研能使你更加明確數(shù)倉建設(shè)的目的;同時也利于后續(xù)的建模設(shè)計,隨著調(diào)研的開展,如何將實體業(yè)務抽象為數(shù)倉模型會更加明朗。
數(shù)據(jù)調(diào)研:各部門或各科室的數(shù)據(jù)現(xiàn)狀了解,包括數(shù)據(jù)分類、數(shù)據(jù)存儲方式、數(shù)據(jù)量、具體的數(shù)據(jù)內(nèi)容等等。這對后續(xù)的主數(shù)據(jù)串聯(lián)或者維度一致性處理等等都是必須的基礎(chǔ)。
3、然后是數(shù)據(jù)倉庫工具選型
傳統(tǒng)型數(shù)據(jù)倉庫:一般會選擇第三方廠家的數(shù)據(jù)庫和配套ETL工具。因為有第三方支持,相對有保障;但缺點也很明顯,受約束以及成本較高。
NoSQL型數(shù)據(jù)倉庫:一般是基于hadoop生態(tài)的數(shù)據(jù)倉庫。hadoop生態(tài)已經(jīng)非常強大,可以找到各種開源組件去支持數(shù)據(jù)倉庫。缺點是需要招聘專門人士去摸索,并且相對會存在一些未知隱患。
4、最后是設(shè)計與實施
設(shè)計:包括數(shù)據(jù)架構(gòu)中的數(shù)據(jù)層次劃分以及具體的模型設(shè)計;也包括程序架構(gòu)中的數(shù)據(jù)質(zhì)量管理、元數(shù)據(jù)管理、調(diào)度管理等;
實施:規(guī)范化的項目管理實施,但同時也需記住一點,數(shù)據(jù)倉庫不是一個項目,它是一個過程。
NewSQL是對一類現(xiàn)代關(guān)系型數(shù)據(jù)庫的統(tǒng)稱,這類數(shù)據(jù)庫對于一般的OLTP讀寫請求提供可橫向擴展的性能,同時支持事務的ACID保證。這些系統(tǒng)既擁有NoSQL數(shù)據(jù)庫的擴展性,又保持傳統(tǒng)數(shù)據(jù)庫的事務特性。NewSQL重新將“應用程序邏輯與數(shù)據(jù)操作邏輯應該分離”的理念帶回到現(xiàn)代數(shù)據(jù)庫的世界,這也驗證了歷史的發(fā)展總是呈現(xiàn)出螺旋上升的形式。
在21世紀00年代中,出現(xiàn)了許多數(shù)據(jù)倉庫系統(tǒng) (如 Vertica,Greeplum 和AsterData),這些以處理OLAP 請求為設(shè)計目標的系統(tǒng)并不在本文定義的NewSQL范圍內(nèi)。OLAP 數(shù)據(jù)庫更關(guān)注針對海量數(shù)據(jù)的大型、復雜、只讀的查詢,查詢時間可能持續(xù)秒級、分鐘級甚至更長。
NoSQL的擁躉普遍認為阻礙傳統(tǒng)數(shù)據(jù)庫橫向擴容、提高可用性的原因在于ACID保證和關(guān)系模型,因此NoSQL運動的核心就是放棄事務強一致性以及關(guān)系模型,擁抱最終一致性和其它數(shù)據(jù)模型?(如 key/value,graphs 和Documents)。
兩個最著名的NoSQL數(shù)據(jù)庫就是Google的BigTable和Amazon的Dynamo,由于二者都未開源,其它組織就開始推出類似的開源替代項目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些創(chuàng)業(yè)公司也加入到這場NoSQL運動中,它們不一定是受BigTable和Dynamo的啟發(fā),但都響應了NoSQL的哲學,其中最出名的就是MongoDB。
在21世紀00年代末,市面上已經(jīng)有許多供用戶選擇的分布式數(shù)據(jù)庫產(chǎn)品。使用NoSQL的優(yōu)勢在于應用開發(fā)者可以更關(guān)注應用邏輯本身,而非數(shù)據(jù)庫的擴展性問題;但與此同時許多應用,如金融系統(tǒng)、訂單處理系統(tǒng),由于無法放棄事務的一致性要求被拒之門外。
一些組織,如Google,已經(jīng)發(fā)現(xiàn)他們的許多工程師將過多的精力放在處理數(shù)據(jù)一致性上,這既暴露了數(shù)據(jù)庫的抽象、又提高了代碼的復雜度,這時候要么選擇回到傳統(tǒng)DBMS時代,用更高的機器配置縱向擴容,要么選擇回到中間件時代,開發(fā)支持分布式事務的中間件。這兩種方案成本都很高,于是NewSQL運動開始醞釀。
NewSQL數(shù)據(jù)庫設(shè)計針對的讀寫事務有以下特點:
1、耗時短。
2、使用索引查詢,涉及少量數(shù)據(jù)。
3、重復度高,通常使用相同的查詢語句和不同的查詢參考。
也有一些學者認為NewSQL系統(tǒng)是特指實現(xiàn)上使用Lock-free并發(fā)控制技術(shù)和share-nothing架構(gòu)的數(shù)據(jù)庫。所有我們認為是NewSQL的數(shù)據(jù)庫系統(tǒng)確實都有這樣的特點。
大數(shù)據(jù)技術(shù)的體系龐大且復雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預處理、分布式存儲、數(shù)據(jù)庫、數(shù)據(jù)倉庫、機器學習、并行計算、可視化等。
1、數(shù)據(jù)采集與預處理:FlumeNG實時日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù);Zookeeper是一個分布式的,開放源碼的分布式應用程序協(xié)調(diào)服務,提供數(shù)據(jù)同步服務。
2、數(shù)據(jù)存儲:Hadoop作為一個開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計,HDFS作為其核心的存儲引擎,已被廣泛用于數(shù)據(jù)存儲。HBase,是一個分布式的、面向列的開源數(shù)據(jù)庫,可以認為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲、NoSQL數(shù)據(jù)庫。
3、數(shù)據(jù)清洗:MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計算。
4、數(shù)據(jù)查詢分析:Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫表,并提供HQL(HiveSQL)查詢功能。Spark啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負載。
5、數(shù)據(jù)可視化:對接一些BI平臺,將分析得到的數(shù)據(jù)進行可視化,用于指導決策服務。
NoSQL 數(shù)據(jù)庫系統(tǒng)目前主流的有 HBase、MongoDB 和 SimpleDB等,每個產(chǎn)品的實現(xiàn)都不盡相同,還是要根據(jù)你的實際應用來分析的的。比如你使用的Hbase,那就參考hadoop的擴展方法即可。
特點:
它們可以處理超大量的數(shù)據(jù)。
它們運行在便宜的PC服務器集群上。
PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數(shù)據(jù),SQL值得花錢。但是當數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。
Bootstrap支持
因為NoSQL項目都是開源的,因此它們?nèi)狈烫峁┑恼街С?。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點:
易擴展
NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復制模型也能實現(xiàn)高可用。
主要應用:
Apache HBase
這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務。
Apache Spark
該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標準之一。當它被用來管理大型數(shù)據(jù)集時,對于復雜的分布式應用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。
Gephi
它可以用來對信息進行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。
MongoDB
這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應用于大數(shù)據(jù)管理。MongoDB是一個應用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務器也作為一個參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務,但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務,有一些公司將EMR應用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應商。”目前,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應商的支持。
IBM
當企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應對高性能計算的工作負載管理等眾多技術(shù)?!?/p>
Intel
和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡文件系統(tǒng)(NFS)、災難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。
Microsoft
微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導者還有很遠的路要走。”
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。
Teradata
對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。
AMPLab
通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔?,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學習、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學進入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應對越來越復雜的各種難題。