圖像二值化的目的是最大限度的將圖象中感興趣的部分保留下來,在很多情況下,也是進行圖像分析、特征提取與模式識別之前的必要的圖像預處理過程。這個看似簡單的問題,在過去的四十年里受到國內(nèi)外學者的廣泛關注,產(chǎn)生了數(shù)以百計的閾值選取方法,但如同其他圖像分割算法一樣,沒有一個現(xiàn)有方法對各種各樣的圖像都能得到令人滿意的結(jié)果。
10年積累的成都做網(wǎng)站、網(wǎng)站設計、外貿(mào)營銷網(wǎng)站建設經(jīng)驗,可以快速應對客戶對網(wǎng)站的新想法和需求。提供各種問題對應的解決方案。讓選擇我們的客戶得到更好、更有力的網(wǎng)絡服務。我雖然不認識你,你也不認識我。但先做網(wǎng)站設計后付款的網(wǎng)站建設流程,更有紹興免費網(wǎng)站建設讓你可以放心的選擇與我們合作。
本文針對幾種經(jīng)典而常用的二值發(fā)放進行了簡單的討論并給出了其vb.net 實現(xiàn)。
1、P-Tile法
Doyle于1962年提出的P-Tile (即P分位數(shù)法)可以說是最古老的一種閾值選取方法。該方法根據(jù)先驗概率來設定閾值,使得二值化后的目標或背景像素比例等于先驗概率,該方法簡單高效,但是對于先驗概率難于估計的圖像卻無能為力。
2、OTSU 算法(大津法)
OSTU算法可以說是自適應計算單閾值(用來轉(zhuǎn)換灰度圖像為二值圖像)的簡單高效方法。1978 OTSU年提出的最大類間方差法以其計算簡單、穩(wěn)定有效,一直廣為使用。
3、迭代法(最佳閥值法)
(1). 求出圖象的最大灰度值和最小灰度值,分別記為Zl和Zk,令初始閾值為:
(2). 根據(jù)閾值TK將圖象分割為前景和背景,分別求出兩者的平均灰度值Z0和ZB:
式中,Z(i,j)是圖像上(i,j)點的象素值,N(i,j)是(i,j)點的權值,一般取1。
(3). 若TK=TK+1,則所得即為閾值,否則轉(zhuǎn)2,迭代計算。
4、一維最大熵閾值法
它的思想是統(tǒng)計圖像中每一個灰度級出現(xiàn)的概率 ,計算該灰度級的熵 ,假設以灰度級T分割圖像,圖像中低于T灰度級的像素點構成目標物體(O),高于灰度級T的像素點構成背景(B),那么各個灰度級在本區(qū)的分布概率為:
O區(qū): i=1,2……,t
B區(qū): i=t+1,t+2……L-1
上式中的 ,這樣對于數(shù)字圖像中的目標和背景區(qū)域的熵分別為:
對圖像中的每一個灰度級分別求取W=H0 +HB,選取使W最大的灰度級作為分割圖像的閾值,這就是一維最大熵閾值圖像分割法。
用directshow獲取幀緩存,轉(zhuǎn)換為標準圖像格式(比如jpg,png這些),存儲到數(shù)據(jù)庫的image字段里就行了.
保存前加一句 myImage2.SetResolution(300, 300) 你設置的bMape不是保存的主畫布 所以無效,設置分辨率就是 SetResolution(X,Y)
應該是邊界溢出了,因為默認是0開始,所以 PictureBox1.Image.Width-1
同理PictureBox1.Image.Height - 1,不然行循環(huán)也會溢出
CType 函數(shù)
任何數(shù)據(jù)類型
必須在兩種數(shù)據(jù)類型之間定義擴大轉(zhuǎn)換或收縮轉(zhuǎn)換
引發(fā) InvalidCastException
DirectCast
任何數(shù)據(jù)類型
一個類型必須繼承自或者實現(xiàn)另一個類型
引發(fā) InvalidCastException
TryCast
僅引用類型
一個類型必須繼承或者實現(xiàn)另一個類型
返回 Nothing (Visual Basic)