特點(diǎn):
創(chuàng)新互聯(lián)公司于2013年開始,是專業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項(xiàng)目成都網(wǎng)站設(shè)計(jì)、成都網(wǎng)站建設(shè)網(wǎng)站策劃,項(xiàng)目實(shí)施與項(xiàng)目整合能力。我們以讓每一個(gè)夢(mèng)想脫穎而出為使命,1280元云城做網(wǎng)站,已為上家服務(wù),為云城各地企業(yè)和個(gè)人服務(wù),聯(lián)系電話:18982081108
它們可以處理超大量的數(shù)據(jù)。
它們運(yùn)行在便宜的PC服務(wù)器集群上。
PC集群擴(kuò)充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對(duì)于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫(kù)結(jié)構(gòu)非常簡(jiǎn)單時(shí),SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫(kù)提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對(duì)穩(wěn)定,他們同時(shí)也表示,企業(yè)的具體需求可能沒有那么多。
Bootstrap支持
因?yàn)镹oSQL項(xiàng)目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點(diǎn):
易擴(kuò)展
NoSQL數(shù)據(jù)庫(kù)種類繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫(kù)的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴(kuò)展。也無形之間,在架構(gòu)的層面上帶來了可擴(kuò)展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫(kù)都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫(kù)的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來說就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫(kù)里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。這點(diǎn)在大數(shù)據(jù)量的web2.0時(shí)代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實(shí)現(xiàn)高可用。
主要應(yīng)用:
Apache HBase
這個(gè)大數(shù)據(jù)管理平臺(tái)建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個(gè)優(yōu)勢(shì)的數(shù)據(jù)庫(kù),Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺(tái),而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺(tái)的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時(shí)計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時(shí)數(shù)據(jù)處理功能,同時(shí)還增加了低延遲的儀表板、安全警報(bào),改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會(huì)、發(fā)展新業(yè)務(wù)。
Apache Spark
該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉(cāng)庫(kù)、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來管理大型數(shù)據(jù)集時(shí),對(duì)于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺(tái)的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實(shí)無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對(duì)。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺(tái),允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個(gè)問題。這一平臺(tái)采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強(qiáng)大的圖形處理平臺(tái),具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時(shí)還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對(duì)于實(shí)時(shí)的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺(tái)上的數(shù)據(jù)。
Gephi
它可以用來對(duì)信息進(jìn)行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個(gè)圖表類型,而且可以在具有上百萬個(gè)節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對(duì)復(fù)雜的IT連接、分布式系統(tǒng)中各個(gè)節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。
MongoDB
這個(gè)堅(jiān)實(shí)的平臺(tái)一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個(gè)應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫(kù),可以用于在JSON這樣的平臺(tái)上存儲(chǔ)和處理數(shù)據(jù)。目前,紐約時(shí)報(bào)、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個(gè)參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場(chǎng)前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動(dòng)縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉(cāng)庫(kù)、新公布的Kenesis實(shí)時(shí)處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫(kù)和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開源Hadoop的發(fā)行版,這個(gè)發(fā)行版采用了Apache Hadoop開源項(xiàng)目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時(shí),Cloudera的工程師們就會(huì)實(shí)現(xiàn)這些功能,或者找一個(gè)擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點(diǎn)使它不同于其他那些供應(yīng)商。”目前,Cloudera的平臺(tái)已經(jīng)擁有200多個(gè)付費(fèi)客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個(gè)節(jié)點(diǎn)實(shí)現(xiàn)對(duì)PB級(jí)數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個(gè)純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進(jìn)開源項(xiàng)目的發(fā)展。Hortonworks平臺(tái)和開源Hadoop聯(lián)系緊密,公司管理人員表示這會(huì)給用戶帶來好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶想要離開這個(gè)平臺(tái),他們可以輕松轉(zhuǎn)向其他開源平臺(tái))。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_發(fā)的成果回報(bào)給了開源社區(qū),比如Ambari,這個(gè)工具就是由Hortonworks開發(fā)而成,用來填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。
IBM
當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時(shí),很多人首先會(huì)想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個(gè)Hadoop部署,它的很多客戶都有PB級(jí)的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)?!癐BM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對(duì)高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)?!?/p>
Intel
和AWS類似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來說,就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個(gè)產(chǎn)品,所以公司在未來還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場(chǎng)上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對(duì)Hadoop用戶的調(diào)查顯示,MapR的評(píng)級(jí)最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場(chǎng)上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個(gè)真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場(chǎng)營(yíng)銷。
Microsoft
微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢(shì)下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項(xiàng)目中,以更廣泛地推動(dòng)Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢實(shí)現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場(chǎng)上有很大優(yōu)勢(shì),而且微軟擁有龐大的用戶群,但要在Hadoop這個(gè)領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走?!?/p>
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個(gè)性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個(gè)名為HAWQ的SQL引擎以及一個(gè)專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺(tái)的優(yōu)勢(shì)在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢(shì)實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個(gè),而且大多是中小型客戶。
Teradata
對(duì)于Teradata來說,Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫(kù)這一領(lǐng)域是Teradata的專長(zhǎng)。所以像Hadoop這樣的NoSQL平臺(tái)崛起可能會(huì)威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺(tái)集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺(tái)上方便地使用存儲(chǔ)在Teradata數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)。
AMPLab
通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔?,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫(kù)、信息檢索、自然語言處理和語音識(shí)別等多個(gè)領(lǐng)域,努力改進(jìn)對(duì)信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時(shí)代,而AMPLab為我們?cè)O(shè)想一個(gè)運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對(duì)越來越復(fù)雜的各種難題。
nosql數(shù)據(jù)庫(kù)的四種類型如下:
1.key-value鍵值存儲(chǔ)數(shù)據(jù)庫(kù):
相關(guān)產(chǎn)品: Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached.
主要應(yīng)用: 內(nèi)容緩存,處理大量數(shù)據(jù)的高負(fù)載訪問,也用于系統(tǒng)日志。
優(yōu)點(diǎn):查找速度快,大量操作時(shí)性能高。
2.列存儲(chǔ)數(shù)據(jù)庫(kù):
相關(guān)產(chǎn)品: BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS.
主要應(yīng)用: 分布式數(shù)據(jù)的儲(chǔ)存與管理。
優(yōu)點(diǎn):查找速度快,可擴(kuò)展性強(qiáng),容易進(jìn)行分布式擴(kuò)展。
缺點(diǎn):功能相對(duì)局限。
3.文檔型數(shù)據(jù)庫(kù)
相關(guān)產(chǎn)品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit.
主要應(yīng)用: web應(yīng)用,管理面向文檔的數(shù)據(jù)或者類似的半結(jié)構(gòu)化數(shù)據(jù)。
優(yōu)點(diǎn):數(shù)據(jù)結(jié)構(gòu)靈活,表結(jié)構(gòu)可變,復(fù)雜性低。
缺點(diǎn):查詢效率低,且缺乏統(tǒng)一的查詢語言。
4.Graph圖形數(shù)據(jù)庫(kù)
相關(guān)產(chǎn)品: Neo4J、OrientDB、InfoGrid、GraphDB.
主要應(yīng)用: 復(fù)雜,互連接,低結(jié)構(gòu)化的圖結(jié)構(gòu)場(chǎng)合, 專注構(gòu)建關(guān)系圖譜。
優(yōu)點(diǎn): 利用圖結(jié)構(gòu)相關(guān)算法, 可用于構(gòu)建復(fù)雜的關(guān)系圖譜。
缺點(diǎn): 復(fù)雜度高。
NoSQL,泛指非關(guān)系型的數(shù)據(jù)庫(kù)。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫(kù)在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫(kù)則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫(kù)的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重?cái)?shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題。
雖然NoSQL流行語火起來才短短一年的時(shí)間,但是不可否認(rèn),現(xiàn)在已經(jīng)開始了第二代運(yùn)動(dòng)。盡管早期的堆棧代碼只能算是一種實(shí)驗(yàn),然而現(xiàn)在的系統(tǒng)已經(jīng)更加的成熟、穩(wěn)定。不過現(xiàn)在也面臨著一個(gè)嚴(yán)酷的事實(shí):技術(shù)越來越成熟——以至于原來很好的NoSQL數(shù)據(jù)存儲(chǔ)不得不進(jìn)行重寫,也有少數(shù)人認(rèn)為這就是所謂的2.0版本。這里列出一些比較知名的工具,可以為大數(shù)據(jù)建立快速、可擴(kuò)展的存儲(chǔ)庫(kù)。
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項(xiàng)全新的數(shù)據(jù)庫(kù)革命性運(yùn)動(dòng),早期就有人提出,發(fā)展至2009年趨勢(shì)越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)據(jù)存儲(chǔ),相對(duì)于鋪天蓋地的關(guān)系型數(shù)據(jù)庫(kù)運(yùn)用,這一概念無疑是一種全新的思維的注入。
對(duì)于NoSQL并沒有一個(gè)明確的范圍和定義,但是他們都普遍存在下面一些共同特征:
不需要預(yù)定義模式:不需要事先定義數(shù)據(jù)模式,預(yù)定義表結(jié)構(gòu)。數(shù)據(jù)中的每條記錄都可能有不同的屬性和格式。當(dāng)插入數(shù)據(jù)時(shí),并不需要預(yù)先定義它們的模式。
無共享架構(gòu):相對(duì)于將所有數(shù)據(jù)存儲(chǔ)的存儲(chǔ)區(qū)域網(wǎng)絡(luò)中的全共享架構(gòu)。NoSQL往往將數(shù)據(jù)劃分后存儲(chǔ)在各個(gè)本地服務(wù)器上。因?yàn)閺谋镜卮疟P讀取數(shù)據(jù)的性能往往好于通過網(wǎng)絡(luò)傳輸讀取數(shù)據(jù)的性能,從而提高了系統(tǒng)的性能。
彈性可擴(kuò)展:可以在系統(tǒng)運(yùn)行的時(shí)候,動(dòng)態(tài)增加或者刪除結(jié)點(diǎn)。不需要停機(jī)維護(hù),數(shù)據(jù)可以自動(dòng)遷移。
分區(qū):相對(duì)于將數(shù)據(jù)存放于同一個(gè)節(jié)點(diǎn),NoSQL數(shù)據(jù)庫(kù)需要將數(shù)據(jù)進(jìn)行分區(qū),將記錄分散在多個(gè)節(jié)點(diǎn)上面。并且通常分區(qū)的同時(shí)還要做復(fù)制。這樣既提高了并行性能,又能保證沒有單點(diǎn)失效的問題。
異步復(fù)制:和RAID存儲(chǔ)系統(tǒng)不同的是,NoSQL中的復(fù)制,往往是基于日志的異步復(fù)制。這樣,數(shù)據(jù)就可以盡快地寫入一個(gè)節(jié)點(diǎn),而不會(huì)被網(wǎng)絡(luò)傳輸引起遲延。缺點(diǎn)是并不總是能保證一致性,這樣的方式在出現(xiàn)故障的時(shí)候,可能會(huì)丟失少量的數(shù)據(jù)。
BASE:相對(duì)于事務(wù)嚴(yán)格的ACID特性,NoSQL數(shù)據(jù)庫(kù)保證的是BASE特性。BASE是最終一致性和軟事務(wù)。
NoSQL數(shù)據(jù)庫(kù)并沒有一個(gè)統(tǒng)一的架構(gòu),兩種NoSQL數(shù)據(jù)庫(kù)之間的不同,甚至遠(yuǎn)遠(yuǎn)超過兩種關(guān)系型數(shù)據(jù)庫(kù)的不同。可以說,NoSQL各有所長(zhǎng),成功的NoSQL必然特別適用于某些場(chǎng)合或者某些應(yīng)用,在這些場(chǎng)合中會(huì)遠(yuǎn)遠(yuǎn)勝過關(guān)系型數(shù)據(jù)庫(kù)和其他的NoSQL。
mongodb hoodoop hbase 等?,F(xiàn)在都挺火的。目前京東,58,360都在使用mongodb。
首先,學(xué)習(xí)大數(shù)據(jù)是需要有java,python和R語言的基礎(chǔ)。
1) Java學(xué)習(xí)到什么樣的程度才可以學(xué)習(xí)大數(shù)據(jù)呢?
java需要學(xué)會(huì)javaSE即可。javaweb,javaee對(duì)于大數(shù)據(jù)用不到。學(xué)會(huì)了javase就可以看懂hadoop框架。
2) python是最容易學(xué)習(xí)的,難易程度:python java Scala 。
python不是比java更直觀好理解么,因?yàn)闀?huì)了Python 還是要學(xué)習(xí)java的,你學(xué)會(huì)了java,再來學(xué)習(xí)python會(huì)很簡(jiǎn)單的,一周的時(shí)間就可以學(xué)會(huì)python。
3) R語言也可以學(xué)習(xí),但是不推薦,因?yàn)閖ava用的人最多,大數(shù)據(jù)的第一個(gè)框架Hadoop,底層全是Java寫的。就算學(xué)會(huì)了R還是看不懂hadoop。
java在大數(shù)據(jù)中的作用是構(gòu)成大數(shù)據(jù)的語言,大數(shù)據(jù)的第一個(gè)框架Hadoop以及其他大數(shù)據(jù)技術(shù)框架,底層語言全是Java寫的,所以推薦首選學(xué)習(xí)java
大數(shù)據(jù)開發(fā)學(xué)習(xí)路線:
第一階段:Hadoop生態(tài)架構(gòu)技術(shù)
1、語言基礎(chǔ)
Java:多理解和實(shí)踐在Java虛擬機(jī)的內(nèi)存管理、以及多線程、線程池、設(shè)計(jì)模式、并行化就可以,不需要深入掌握。
Linux:系統(tǒng)安裝、基本命令、網(wǎng)絡(luò)配置、Vim編輯器、進(jìn)程管理、Shell腳本、虛擬機(jī)的菜單熟悉等等。
Python:基礎(chǔ)語法,數(shù)據(jù)結(jié)構(gòu),函數(shù),條件判斷,循環(huán)等基礎(chǔ)知識(shí)。
2、環(huán)境準(zhǔn)備
這里介紹在windows電腦搭建完全分布式,1主2從。
VMware虛擬機(jī)、Linux系統(tǒng)(Centos6.5)、Hadoop安裝包,這里準(zhǔn)備好Hadoop完全分布式集群環(huán)境。
3、MapReduce
MapReduce分布式離線計(jì)算框架,是Hadoop核心編程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的數(shù)據(jù)訪問,適合大規(guī)模數(shù)據(jù)集上的應(yīng)用。
5、Yarn(Hadoop2.0)
Yarn是一個(gè)資源調(diào)度平臺(tái),主要負(fù)責(zé)給任務(wù)分配資源。
6、Hive
Hive是一個(gè)數(shù)據(jù)倉(cāng)庫(kù),所有的數(shù)據(jù)都是存儲(chǔ)在HDFS上的。使用Hive主要是寫Hql。
7、Spark
Spark 是專為大規(guī)模數(shù)據(jù)處理而設(shè)計(jì)的快速通用的計(jì)算引擎。
8、SparkStreaming
Spark Streaming是實(shí)時(shí)處理框架,數(shù)據(jù)是一批一批的處理。
9、SparkHive
Spark作為Hive的計(jì)算引擎,將Hive的查詢作為Spark的任務(wù)提交到Spark集群上進(jìn)行計(jì)算,可以提高Hive查詢的性能。
10、Storm
Storm是一個(gè)實(shí)時(shí)計(jì)算框架,Storm是對(duì)實(shí)時(shí)新增的每一條數(shù)據(jù)進(jìn)行處理,是一條一條的處理,可以保證數(shù)據(jù)處理的時(shí)效性。
11、Zookeeper
Zookeeper是很多大數(shù)據(jù)框架的基礎(chǔ),是集群的管理者。
12、Hbase
Hbase是一個(gè)Nosql數(shù)據(jù)庫(kù),是高可靠、面向列的、可伸縮的、分布式的數(shù)據(jù)庫(kù)。
13、Kafka
kafka是一個(gè)消息中間件,作為一個(gè)中間緩沖層。
14、Flume
Flume常見的就是采集應(yīng)用產(chǎn)生的日志文件中的數(shù)據(jù),一般有兩個(gè)流程。
一個(gè)是Flume采集數(shù)據(jù)存儲(chǔ)到Kafka中,方便Storm或者SparkStreaming進(jìn)行實(shí)時(shí)處理。
另一個(gè)流程是Flume采集的數(shù)據(jù)存儲(chǔ)到HDFS上,為了后期使用hadoop或者spark進(jìn)行離線處理。
第二階段:數(shù)據(jù)挖掘算法
1、中文分詞
開源分詞庫(kù)的離線和在線應(yīng)用
2、自然語言處理
文本相關(guān)性算法
3、推薦算法
基于CB、CF,歸一法,Mahout應(yīng)用。
4、分類算法
NB、SVM
5、回歸算法
LR、DecisionTree
6、聚類算法
層次聚類、Kmeans
7、神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)
NN、Tensorflow
以上就是學(xué)習(xí)Hadoop開發(fā)的一個(gè)詳細(xì)路線,如果需要了解具體框架的開發(fā)技術(shù),可咨詢加米谷大數(shù)據(jù)老師,詳細(xì)了解。
學(xué)習(xí)大數(shù)據(jù)開發(fā)需要掌握哪些技術(shù)呢?
(1)Java語言基礎(chǔ)
Java開發(fā)介紹、熟悉Eclipse開發(fā)工具、Java語言基礎(chǔ)、Java流程控制、Java字符串、Java數(shù)組與類和對(duì)象、數(shù)字處理類與核心技術(shù)、I/O與反射、多線程、Swing程序與集合類
(2)HTML、CSS與Java
PC端網(wǎng)站布局、HTML5+CSS3基礎(chǔ)、WebApp頁(yè)面布局、原生Java交互功能開發(fā)、Ajax異步交互、jQuery應(yīng)用
(3)JavaWeb和數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)、JavaWeb開發(fā)核心、JavaWeb開發(fā)內(nèi)幕
LinuxHadoop生態(tài)體系
Linux體系、Hadoop離線計(jì)算大綱、分布式數(shù)據(jù)庫(kù)Hbase、數(shù)據(jù)倉(cāng)庫(kù)Hive、數(shù)據(jù)遷移工具Sqoop、Flume分布式日志框架
分布式計(jì)算框架和SparkStrom生態(tài)體系
(1)分布式計(jì)算框架
Python編程語言、Scala編程語言、Spark大數(shù)據(jù)處理、Spark—Streaming大數(shù)據(jù)處理、Spark—Mlib機(jī)器學(xué)習(xí)、Spark—GraphX 圖計(jì)算、實(shí)戰(zhàn)一:基于Spark的推薦系統(tǒng)(某一線公司真實(shí)項(xiàng)目)、實(shí)戰(zhàn)二:新浪網(wǎng)()
(2)storm技術(shù)架構(gòu)體系
Storm原理與基礎(chǔ)、消息隊(duì)列kafka、Redis工具、zookeeper詳解、大數(shù)據(jù)項(xiàng)目實(shí)戰(zhàn)數(shù)據(jù)獲取、數(shù)據(jù)處理、數(shù)據(jù)分析、數(shù)據(jù)展現(xiàn)、數(shù)據(jù)應(yīng)用
大數(shù)據(jù)分析—AI(人工智能)Data
Analyze工作環(huán)境準(zhǔn)備數(shù)據(jù)分析基礎(chǔ)、數(shù)據(jù)可視化、Python機(jī)器學(xué)習(xí)
以上的回答希望對(duì)你有所幫助
基本含義NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項(xiàng)全新的數(shù)據(jù)庫(kù)革命性運(yùn)動(dòng),早期就有人提出,發(fā)展至2009年趨勢(shì)越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)據(jù)存儲(chǔ),相對(duì)于鋪天蓋地的關(guān)系型數(shù)據(jù)庫(kù)運(yùn)用,這一概念無疑是一種全新的思維的注入。NoSQLNoSQL數(shù)據(jù)庫(kù)的四大分類鍵值(Key-Value)存儲(chǔ)數(shù)據(jù)庫(kù)這一類數(shù)據(jù)庫(kù)主要會(huì)使用到一個(gè)哈希表,這個(gè)表中有一個(gè)特定的鍵和一個(gè)指針指向特定的數(shù)據(jù)。Key/value模型對(duì)于IT系統(tǒng)來說的優(yōu)勢(shì)在于簡(jiǎn)單、易部署。但是如果DBA只對(duì)部分值進(jìn)行查詢或更新的時(shí)候,Key/value就顯得效率低下了。[3] 舉例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存儲(chǔ)數(shù)據(jù)庫(kù)。這部分?jǐn)?shù)據(jù)庫(kù)通常是用來應(yīng)對(duì)分布式存儲(chǔ)的海量數(shù)據(jù)。鍵仍然存在,但是它們的特點(diǎn)是指向了多個(gè)列。這些列是由列家族來安排的。如:Cassandra, HBase, Riak.文檔型數(shù)據(jù)庫(kù)文檔型數(shù)據(jù)庫(kù)的靈感是來自于Lotus Notes辦公軟件的,而且它同第一種鍵值存儲(chǔ)相類似。該類型的數(shù)據(jù)模型是版本化的文檔,半結(jié)構(gòu)化的文檔以特定的格式存儲(chǔ),比如JSON。文檔型數(shù)據(jù)庫(kù)可 以看作是鍵值數(shù)據(jù)庫(kù)的升級(jí)版,允許之間嵌套鍵值。而且文檔型數(shù)據(jù)庫(kù)比鍵值數(shù)據(jù)庫(kù)的查詢效率更高。如:CouchDB, MongoDb. 國(guó)內(nèi)也有文檔型數(shù)據(jù)庫(kù)SequoiaDB,已經(jīng)開源。圖形(Graph)數(shù)據(jù)庫(kù)圖形結(jié)構(gòu)的數(shù)據(jù)庫(kù)同其他行列以及剛性結(jié)構(gòu)的SQL數(shù)據(jù)庫(kù)不同,它是使用靈活的圖形模型,并且能夠擴(kuò)展到多個(gè)服務(wù)器上。NoSQL數(shù)據(jù)庫(kù)沒有標(biāo)準(zhǔn)的查詢語言(SQL),因此進(jìn)行數(shù)據(jù)庫(kù)查詢需要制定數(shù)據(jù)模型。許多NoSQL數(shù)據(jù)庫(kù)都有REST式的數(shù)據(jù)接口或者查詢API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我們總結(jié)NoSQL數(shù)據(jù)庫(kù)在以下的這幾種情況下比較適用:1、數(shù)據(jù)模型比較簡(jiǎn)單;2、需要靈活性更強(qiáng)的IT系統(tǒng);3、對(duì)數(shù)據(jù)庫(kù)性能要求較高;4、不需要高度的數(shù)據(jù)一致性;5、對(duì)于給定key,比較容易映射復(fù)雜值的環(huán)境。