關(guān)于mysql處理百萬級以上的數(shù)據(jù)時如何提高其查詢速度的方法
創(chuàng)新互聯(lián)服務(wù)項目包括烏海網(wǎng)站建設(shè)、烏海網(wǎng)站制作、烏海網(wǎng)頁制作以及烏海網(wǎng)絡(luò)營銷策劃等。多年來,我們專注于互聯(lián)網(wǎng)行業(yè),利用自身積累的技術(shù)優(yōu)勢、行業(yè)經(jīng)驗、深度合作伙伴關(guān)系等,向廣大中小型企業(yè)、政府機構(gòu)等提供互聯(lián)網(wǎng)行業(yè)的解決方案,烏海網(wǎng)站推廣取得了明顯的社會效益與經(jīng)濟效益。目前,我們服務(wù)的客戶以成都為中心已經(jīng)輻射到烏海省份的部分城市,未來相信會繼續(xù)擴大服務(wù)區(qū)域并繼續(xù)獲得客戶的支持與信任!
最近一段時間由于工作需要,開始關(guān)注針對Mysql數(shù)據(jù)庫的select查詢語句的相關(guān)優(yōu)化方法。
由于在參與的實際項目中發(fā)現(xiàn)當mysql表的數(shù)據(jù)量達到百萬級時,普通SQL查詢效率呈直線下降,而且如果where中的查詢條件較多時,其查詢速度簡直無法容忍。曾經(jīng)測試對一個包含400多萬條記錄(有索引)的表執(zhí)行一條條件查詢,其查詢時間竟然高達40幾秒,相信這么高的查詢延時,任何用戶都會抓狂。因此如何提高sql語句查詢效率,顯得十分重要。以下是網(wǎng)上流傳比較廣泛的30種SQL查詢語句優(yōu)化方法:
1、應(yīng)盡量避免在 where 子句中使用!=或操作符,否則將引擎放棄使用索引而進行全表掃描。
2、對查詢進行優(yōu)化,應(yīng)盡量避免全表掃描,首先應(yīng)考慮在 where 及 order by 涉及的列上建立索引。
3、應(yīng)盡量避免在 where 子句中對字段進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設(shè)置默認值0,確保表中num列沒有null值,然后這樣查詢:
select id from t where num=0
4、盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
5、下面的查詢也將導致全表掃描:(不能前置百分號)
select id from t where name like ‘%c%’
若要提高效率,可以考慮全文檢索。
6、in 和 not in 也要慎用,否則會導致全表掃描,如:
select id from t where num in(1,2,3)
對于連續(xù)的數(shù)值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7、如果在 where 子句中使用參數(shù),也會導致全表掃描。因為SQL只有在運行時才會解析局部變量,但優(yōu)化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然 而,如果在編譯時建立訪問計劃,變量的值還是未知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:
select id from t where num=@num
可以改為強制查詢使用索引:
select id from t with(index(索引名)) where num=@num
8、應(yīng)盡量避免在 where 子句中對字段進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where num/2=100
應(yīng)改為:
select id from t where num=100*2
9、應(yīng)盡量避免在where子句中對字段進行函數(shù)操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where substring(name,1,3)=’abc’–name以abc開頭的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
應(yīng)改為:
select id from t where name like ‘a(chǎn)bc%’
select id from t where createdate=’2005-11-30′ and createdate’2005-12-1′
10、不要在 where 子句中的“=”左邊進行函數(shù)、算術(shù)運算或其他表達式運算,否則系統(tǒng)將可能無法正確使用索引。
11、在使用索引字段作為條件時,如果該索引是復合索引,那么必須使用到該索引中的第一個字段作為條件時才能保證系統(tǒng)使用該索引,否則該索引將不會被使 用,并且應(yīng)盡可能的讓字段順序與索引順序相一致。
12、不要寫一些沒有意義的查詢,如需要生成一個空表結(jié)構(gòu):
select col1,col2 into #t from t where 1=0
這類代碼不會返回任何結(jié)果集,但是會消耗系統(tǒng)資源的,應(yīng)改成這樣:
create table #t(…)
13、很多時候用 exists 代替 in 是一個好的選擇:
select num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
14、并不是所有索引對查詢都有效,SQL是根據(jù)表中數(shù)據(jù)來進行查詢優(yōu)化的,當索引列有大量數(shù)據(jù)重復時,SQL查詢可能不會去利用索引,如一表中有字段 sex,male、female幾乎各一半,那么即使在sex上建了索引也對查詢效率起不了作用。
15、索引并不是越多越好,索引固然可以提高相應(yīng)的 select 的效率,但同時也降低了 insert 及 update 的效率,因為 insert 或 update 時有可能會重建索引,所以怎樣建索引需要慎重考慮,視具體情況而定。一個表的索引數(shù)最好不要超過6個,若太多則應(yīng)考慮一些不常使用到的列上建的索引是否有 必要。
16.應(yīng)盡可能的避免更新 clustered 索引數(shù)據(jù)列,因為 clustered 索引數(shù)據(jù)列的順序就是表記錄的物理存儲順序,一旦該列值改變將導致整個表記錄的順序的調(diào)整,會耗費相當大的資源。若應(yīng)用系統(tǒng)需要頻繁更新 clustered 索引數(shù)據(jù)列,那么需要考慮是否應(yīng)將該索引建為 clustered 索引。
17、盡量使用數(shù)字型字段,若只含數(shù)值信息的字段盡量不要設(shè)計為字符型,這會降低查詢和連接的性能,并會增加存儲開銷。這是因為引擎在處理查詢和連接時會 逐個比較字符串中每一個字符,而對于數(shù)字型而言只需要比較一次就夠了。
18、盡可能的使用 varchar/nvarchar 代替 char/nchar ,因為首先變長字段存儲空間小,可以節(jié)省存儲空間,其次對于查詢來說,在一個相對較小的字段內(nèi)搜索效率顯然要高些。
19、任何地方都不要使用 select * from t ,用具體的字段列表代替“*”,不要返回用不到的任何字段。
20、盡量使用表變量來代替臨時表。如果表變量包含大量數(shù)據(jù),請注意索引非常有限(只有主鍵索引)。
21、避免頻繁創(chuàng)建和刪除臨時表,以減少系統(tǒng)表資源的消耗。
22、臨時表并不是不可使用,適當?shù)厥褂盟鼈兛梢允鼓承├谈行В?,當需要重復引用大型表或常用表中的某個數(shù)據(jù)集時。但是,對于一次性事件,最好使 用導出表。
23、在新建臨時表時,如果一次性插入數(shù)據(jù)量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果數(shù)據(jù)量不大,為了緩和系統(tǒng)表的資源,應(yīng)先create table,然后insert。
24、如果使用到了臨時表,在存儲過程的最后務(wù)必將所有的臨時表顯式刪除,先 truncate table ,然后 drop table ,這樣可以避免系統(tǒng)表的較長時間鎖定。
25、盡量避免使用游標,因為游標的效率較差,如果游標操作的數(shù)據(jù)超過1萬行,那么就應(yīng)該考慮改寫。
26、使用基于游標的方法或臨時表方法之前,應(yīng)先尋找基于集的解決方案來解決問題,基于集的方法通常更有效。
27、與臨時表一樣,游標并不是不可使用。對小型數(shù)據(jù)集使用 FAST_FORWARD 游標通常要優(yōu)于其他逐行處理方法,尤其是在必須引用幾個表才能獲得所需的數(shù)據(jù)時。在結(jié)果集中包括“合計”的例程通常要比使用游標執(zhí)行的速度快。如果開發(fā)時 間允許,基于游標的方法和基于集的方法都可以嘗試一下,看哪一種方法的效果更好。
28、在所有的存儲過程和觸發(fā)器的開始處設(shè)置 SET NOCOUNT ON ,在結(jié)束時設(shè)置 SET NOCOUNT OFF 。無需在執(zhí)行存儲過程和觸發(fā)器的每個語句后向客戶端發(fā)送 DONE_IN_PROC 消息。
29、盡量避免向客戶端返回大數(shù)據(jù)量,若數(shù)據(jù)量過大,應(yīng)該考慮相應(yīng)需求是否合理。
30、盡量避免大事務(wù)操作,提高系統(tǒng)并發(fā)能力。
1、采用長連接連接數(shù)據(jù)庫2、一次性讀取查詢結(jié)果到本地(mysqli_result::store_result、pdo::fetchall)
大數(shù)據(jù)的話可以進行以下操作:
減少對數(shù)據(jù)庫的讀取,也就是減少調(diào)用數(shù)據(jù)庫,
進行數(shù)據(jù)緩存,
利用數(shù)據(jù)庫的自身優(yōu)化技術(shù),如索引等
精確查詢條件,有利于提高查找速度
這個問題在PHP的官方網(wǎng)站上叫緩沖查詢和非緩沖查詢(Buffered and Unbuffered queries)。PHP的查詢?nèi)笔∧J绞蔷彌_模式。也就是說,查詢數(shù)據(jù)結(jié)果會一次全部提取到內(nèi)存里供PHP程序處理。這樣給了PHP程序額外的功能,比如說,計算行數(shù),將指針指向某一行等。更重要的是程序可以對數(shù)據(jù)集反復進行二次查詢和過濾等操作。但這種緩沖查詢模式的缺陷就是消耗內(nèi)存,也就是用空間換速度。
相對的,另外一種PHP查詢模式是非緩沖查詢,數(shù)據(jù)庫服務(wù)器會一條一條的返回數(shù)據(jù),而不是一次全部返回,這樣的結(jié)果就是PHP程序消耗較少的內(nèi)存,但卻增加了數(shù)據(jù)庫服務(wù)器的壓力,因為數(shù)據(jù)庫會一直等待PHP來取數(shù)據(jù),一直到數(shù)據(jù)全部取完。
很顯然,緩沖查詢模式適用于小數(shù)據(jù)量查詢,而非緩沖查詢適應(yīng)于大數(shù)據(jù)量查詢。
從sql本身來看,基本上沒有優(yōu)化的余地了,如果數(shù)據(jù)量過大造成的緩慢,
可以考慮使用sql分頁語句:
(即分頁由sql完成,并不是由PHP完成)
你要告訴我用的是什么數(shù)據(jù)庫: mysql? mssql? oracle?
如果不用sql分頁語句去寫,只能從數(shù)據(jù)庫上工夫。
1. 將幾個table 的 hotelId 字段, name字段 分別建立索引。
2. 建立分表,將大數(shù)據(jù)分之。
使用緩存,比如memcache,redis,因為它們是在內(nèi)存中運行,所以處理數(shù)據(jù),返回數(shù)據(jù)非???,所以可以應(yīng)對高并發(fā)。
2.增加帶寬和機器性能,1M的帶寬同時處理的流量肯定有限,所以在資源允許的情況下,大帶寬,多核cpu,高內(nèi)存是一個解決方案。
3.分布式,讓多個訪問分到不同的機器上去處理,每個機器處理的請求就相對減少了。
簡單說些常用技術(shù),負載均衡,限流,加速器等