傳統(tǒng)數(shù)據(jù)庫(kù)仍舊會(huì)有一席之地,至于NewSQL的優(yōu)勢(shì)又是什么,簡(jiǎn)單和大家說(shuō)說(shuō):
創(chuàng)新互聯(lián)建站基于成都重慶香港及美國(guó)等地區(qū)分布式IDC機(jī)房數(shù)據(jù)中心構(gòu)建的電信大帶寬,聯(lián)通大帶寬,移動(dòng)大帶寬,多線BGP大帶寬租用,是為眾多客戶(hù)提供專(zhuān)業(yè)四川服務(wù)器托管報(bào)價(jià),主機(jī)托管價(jià)格性?xún)r(jià)比高,為金融證券行業(yè)服務(wù)器托管,ai人工智能服務(wù)器托管提供bgp線路100M獨(dú)享,G口帶寬及機(jī)柜租用的專(zhuān)業(yè)成都idc公司。
首先關(guān)于“中間件+關(guān)系數(shù)據(jù)庫(kù)分庫(kù)分表”算不算NewSQL分布式數(shù)據(jù)庫(kù)問(wèn)題,國(guó)外有篇論文pavlo-newsql-sigmodrec,如果根據(jù)該文中的分類(lèi),Spanner、TiDB、OB算是第一種新架構(gòu)型,Sharding-Sphere、Mycat、DRDS等中間件方案算是第二種(文中還有第三種云數(shù)據(jù)庫(kù),本文暫不詳細(xì)介紹)。
基于中間件(包括SDK和Proxy兩種形式)+傳統(tǒng)關(guān)系數(shù)據(jù)庫(kù)(分庫(kù)分表)模式是不是分布式架構(gòu)?我覺(jué)得是的,因?yàn)榇鎯?chǔ)確實(shí)也分布式了,也能實(shí)現(xiàn)橫向擴(kuò)展。但是不是“偽”分布式數(shù)據(jù)庫(kù)?從架構(gòu)先進(jìn)性來(lái)看,這么說(shuō)也有一定道理。
“偽”主要體現(xiàn)在中間件層與底層DB重復(fù)的SQL解析與執(zhí)行計(jì)劃生成、存儲(chǔ)引擎基于B+Tree等,這在分布式數(shù)據(jù)庫(kù)架構(gòu)中實(shí)際上冗余低效的。為了避免引起真?zhèn)畏植际綌?shù)據(jù)庫(kù)的口水戰(zhàn),本文中NewSQL數(shù)據(jù)庫(kù)特指這種新架構(gòu)NewSQL數(shù)據(jù)庫(kù)。
NewSQL數(shù)據(jù)庫(kù)相比中間件+分庫(kù)分表的先進(jìn)在哪兒?畫(huà)一個(gè)簡(jiǎn)單的架構(gòu)對(duì)比圖:
傳統(tǒng)數(shù)據(jù)庫(kù)面向磁盤(pán)設(shè)計(jì),基于內(nèi)存的存儲(chǔ)管理及并發(fā)控制,不如NewSQL數(shù)據(jù)庫(kù)那般高效利用;
中間件模式SQL解析、執(zhí)行計(jì)劃優(yōu)化等在中間件與數(shù)據(jù)庫(kù)中重復(fù)工作,效率相比較低;
NewSQL數(shù)據(jù)庫(kù)的分布式事務(wù)相比于XA進(jìn)行了優(yōu)化,性能更高;
新架構(gòu)NewSQL數(shù)據(jù)庫(kù)存儲(chǔ)設(shè)計(jì)即為基于paxos(或Raft)協(xié)議的多副本,相比于傳統(tǒng)數(shù)據(jù)庫(kù)主從模式(半同步轉(zhuǎn)異步后也存在丟數(shù)問(wèn)題),在實(shí)現(xiàn)了真正的高可用、高可靠(RTO30s,RPO=0);
NewSQL數(shù)據(jù)庫(kù)天生支持?jǐn)?shù)據(jù)分片,數(shù)據(jù)的遷移、擴(kuò)容都是自動(dòng)化的,大大減輕了DBA的工作,同時(shí)對(duì)應(yīng)用透明,無(wú)需在SQL指定分庫(kù)分表鍵。
特點(diǎn):
它們可以處理超大量的數(shù)據(jù)。
它們運(yùn)行在便宜的PC服務(wù)器集群上。
PC集群擴(kuò)充起來(lái)非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱(chēng),通過(guò)NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對(duì)于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢(qián)。但是當(dāng)數(shù)據(jù)庫(kù)結(jié)構(gòu)非常簡(jiǎn)單時(shí),SQL可能沒(méi)有太大用處。
沒(méi)有過(guò)多的操作。
雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫(kù)提供了無(wú)可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對(duì)穩(wěn)定,他們同時(shí)也表示,企業(yè)的具體需求可能沒(méi)有那么多。
Bootstrap支持
因?yàn)镹oSQL項(xiàng)目都是開(kāi)源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開(kāi)源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點(diǎn):
易擴(kuò)展
NoSQL數(shù)據(jù)庫(kù)種類(lèi)繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫(kù)的關(guān)系型特性。數(shù)據(jù)之間無(wú)關(guān)系,這樣就非常容易擴(kuò)展。也無(wú)形之間,在架構(gòu)的層面上帶來(lái)了可擴(kuò)展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫(kù)都具有非常高的讀寫(xiě)性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無(wú)關(guān)系性,數(shù)據(jù)庫(kù)的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來(lái)說(shuō)就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無(wú)需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫(kù)里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。這點(diǎn)在大數(shù)據(jù)量的web2.0時(shí)代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過(guò)復(fù)制模型也能實(shí)現(xiàn)高可用。
主要應(yīng)用:
Apache HBase
這個(gè)大數(shù)據(jù)管理平臺(tái)建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開(kāi)源、Java編碼、分布式多個(gè)優(yōu)勢(shì)的數(shù)據(jù)庫(kù),Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺(tái),而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺(tái)的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時(shí)計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時(shí)數(shù)據(jù)處理功能,同時(shí)還增加了低延遲的儀表板、安全警報(bào),改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會(huì)、發(fā)展新業(yè)務(wù)。
Apache Spark
該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢(xún),此外還融合數(shù)據(jù)倉(cāng)庫(kù)、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語(yǔ)言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來(lái)管理大型數(shù)據(jù)集時(shí),對(duì)于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺(tái)的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實(shí)無(wú)論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對(duì)。通過(guò)支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺(tái),允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個(gè)問(wèn)題。這一平臺(tái)采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類(lèi)型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強(qiáng)大的圖形處理平臺(tái),具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過(guò)這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時(shí)還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢(xún)。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對(duì)于實(shí)時(shí)的SQL查詢(xún)也有很好的效果,通過(guò)高效的SQL查詢(xún),你可以很快的了解到大數(shù)據(jù)平臺(tái)上的數(shù)據(jù)。
Gephi
它可以用來(lái)對(duì)信息進(jìn)行關(guān)聯(lián)和量化處理,通過(guò)為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個(gè)圖表類(lèi)型,而且可以在具有上百萬(wàn)個(gè)節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶(hù)社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對(duì)復(fù)雜的IT連接、分布式系統(tǒng)中各個(gè)節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。
MongoDB
這個(gè)堅(jiān)實(shí)的平臺(tái)一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個(gè)應(yīng)用開(kāi)源技術(shù)開(kāi)發(fā)的NoSQL數(shù)據(jù)庫(kù),可以用于在JSON這樣的平臺(tái)上存儲(chǔ)和處理數(shù)據(jù)。目前,紐約時(shí)報(bào)、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個(gè)參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱(chēng)為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱(chēng)為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來(lái)提供大數(shù)據(jù)管理服務(wù),但它不是純開(kāi)源Hadoop,經(jīng)過(guò)修改后現(xiàn)在被專(zhuān)門(mén)用在AWS云上。
Forrester稱(chēng)EMR有很好的市場(chǎng)前景。很多公司基于EMR為客戶(hù)提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢(xún)、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱(chēng)未來(lái)EMR可以基于工作量的需要自動(dòng)縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉(cāng)庫(kù)、新公布的Kenesis實(shí)時(shí)處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫(kù)和商業(yè)智能工具。不過(guò)AWS還沒(méi)有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開(kāi)源Hadoop的發(fā)行版,這個(gè)發(fā)行版采用了Apache Hadoop開(kāi)源項(xiàng)目的很多技術(shù),不過(guò)基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開(kāi)發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開(kāi)源Hadoop,但也不是純開(kāi)源的產(chǎn)品。當(dāng)Cloudera的客戶(hù)需要Hadoop不具備的某些功能時(shí),Cloudera的工程師們就會(huì)實(shí)現(xiàn)這些功能,或者找一個(gè)擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿(mǎn)足客戶(hù)需求,這一點(diǎn)使它不同于其他那些供應(yīng)商?!蹦壳埃珻loudera的平臺(tái)已經(jīng)擁有200多個(gè)付費(fèi)客戶(hù),一些客戶(hù)在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個(gè)節(jié)點(diǎn)實(shí)現(xiàn)對(duì)PB級(jí)數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個(gè)純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開(kāi)源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶(hù)社區(qū),推進(jìn)開(kāi)源項(xiàng)目的發(fā)展。Hortonworks平臺(tái)和開(kāi)源Hadoop聯(lián)系緊密,公司管理人員表示這會(huì)給用戶(hù)帶來(lái)好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶(hù)想要離開(kāi)這個(gè)平臺(tái),他們可以輕松轉(zhuǎn)向其他開(kāi)源平臺(tái))。這并不是說(shuō)Hortonworks完全依賴(lài)開(kāi)源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_(kāi)發(fā)的成果回報(bào)給了開(kāi)源社區(qū),比如Ambari,這個(gè)工具就是由Hortonworks開(kāi)發(fā)而成,用來(lái)填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。
IBM
當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時(shí),很多人首先會(huì)想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱(chēng)IBM已有100多個(gè)Hadoop部署,它的很多客戶(hù)都有PB級(jí)的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)?!癐BM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對(duì)高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)?!?/p>
Intel
和AWS類(lèi)似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來(lái)說(shuō),就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶(hù)打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個(gè)產(chǎn)品,所以公司在未來(lái)還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場(chǎng)上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過(guò)很多人可能都沒(méi)有聽(tīng)說(shuō)過(guò)。Forrester對(duì)Hadoop用戶(hù)的調(diào)查顯示,MapR的評(píng)級(jí)最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說(shuō)MapR在Hadoop市場(chǎng)上沒(méi)有Cloudera和Hortonworks那樣的知名度,MapR要成為一個(gè)真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場(chǎng)營(yíng)銷(xiāo)。
Microsoft
微軟在開(kāi)源軟件問(wèn)題上一直很低調(diào),但在大數(shù)據(jù)形勢(shì)下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開(kāi)源項(xiàng)目中,以更廣泛地推動(dòng)Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢(xún)實(shí)現(xiàn)了SQLServer查詢(xún)的一些功能。Forrester說(shuō):“微軟在數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開(kāi)發(fā)工具市場(chǎng)上有很大優(yōu)勢(shì),而且微軟擁有龐大的用戶(hù)群,但要在Hadoop這個(gè)領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走?!?/p>
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個(gè)性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開(kāi)源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個(gè)名為HAWQ的SQL引擎以及一個(gè)專(zhuān)門(mén)解決大數(shù)據(jù)問(wèn)題的Hadoop應(yīng)用。Forrester稱(chēng)Pivotal Hadoop平臺(tái)的優(yōu)勢(shì)在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢(shì)實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶(hù)還不到100個(gè),而且大多是中小型客戶(hù)。
Teradata
對(duì)于Teradata來(lái)說(shuō),Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫(kù)這一領(lǐng)域是Teradata的專(zhuān)長(zhǎng)。所以像Hadoop這樣的NoSQL平臺(tái)崛起可能會(huì)威脅到Teradata。相反,Teradata接受了Hadoop,通過(guò)與Hortonworks合作,Teradata在Hadoop平臺(tái)集成了SQL技術(shù),這使Teradata的客戶(hù)可以在Hadoop平臺(tái)上方便地使用存儲(chǔ)在Teradata數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)。
AMPLab
通過(guò)將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜?,而這也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫(kù)、信息檢索、自然語(yǔ)言處理和語(yǔ)音識(shí)別等多個(gè)領(lǐng)域,努力改進(jìn)對(duì)信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開(kāi)源分布式SQL查詢(xún)引擎Shark也源于AMPLab,Shark具有極高的查詢(xún)效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時(shí)代,而AMPLab為我們?cè)O(shè)想一個(gè)運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對(duì)越來(lái)越復(fù)雜的各種難題。
由于現(xiàn)在的網(wǎng)絡(luò)資源越來(lái)越多,所以非關(guān)系型的NoSQL需要也越來(lái)越大,我是比較看好NoSQL的,未來(lái)的NoSQL主要就是幾個(gè)方向,速度、分布式和命中算法