真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

nosql數(shù)據(jù)庫市場前景,nosql數(shù)據(jù)庫與關(guān)系型數(shù)據(jù)庫的區(qū)別

常見NoSQL數(shù)據(jù)庫的應(yīng)用場景是怎么樣的

文檔數(shù)據(jù)庫

10多年的古田網(wǎng)站建設(shè)經(jīng)驗,針對設(shè)計、前端、開發(fā)、售后、文案、推廣等六對一服務(wù),響應(yīng)快,48小時及時工作處理。全網(wǎng)整合營銷推廣的優(yōu)勢是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動調(diào)整古田建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計,從而大程度地提升瀏覽體驗。創(chuàng)新互聯(lián)公司從事“古田網(wǎng)站設(shè)計”,“古田網(wǎng)站推廣”以來,每個客戶項目都認(rèn)真落實執(zhí)行。

源起:受Lotus Notes啟發(fā)。

數(shù)據(jù)模型:包含了key-value的文檔集合

例子:CouchDB, MongoDB

優(yōu)點:數(shù)據(jù)模型自然,編程友好,快速開發(fā),web友好,CRUD。

圖數(shù)據(jù)庫

源起: 歐拉和圖理論。

數(shù)據(jù)模型:節(jié)點和關(guān)系,也可處理鍵值對。

例子:AllegroGraph, InfoGrid, Neo4j

優(yōu)點:解決復(fù)雜的圖問題。

關(guān)系數(shù)據(jù)庫

源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的

數(shù)據(jù)模型:各種關(guān)系

例子:VoltDB, Clustrix, MySQL

優(yōu)點:高性能、可擴展的OLTP,支持SQL,物化視圖,支持事務(wù),編程友好。

對象數(shù)據(jù)庫

源起:圖數(shù)據(jù)庫研究

數(shù)據(jù)模型:對象

例子:Objectivity, Gemstone

優(yōu)點:復(fù)雜對象模型,快速鍵值訪問,鍵功能訪問,以及圖數(shù)據(jù)庫的優(yōu)點。

Key-Value數(shù)據(jù)庫

源起:Amazon的論文 Dynamo 和 Distributed HashTables。

數(shù)據(jù)模型:鍵值對

例子:Membase, Riak

優(yōu)點:處理大量數(shù)據(jù),快速處理大量讀寫請求。編程友好。

BigTable類型數(shù)據(jù)庫

源起:Google的論文 BigTable。

數(shù)據(jù)模型:列簇,每一行在理論上都是不同的

例子:HBase, Hypertable, Cassandra

優(yōu)點:處理大量數(shù)據(jù),應(yīng)對極高寫負(fù)載,高可用,支持跨數(shù)據(jù)中心, MapReduce。

數(shù)據(jù)結(jié)構(gòu)服務(wù)

源起: ?

數(shù)據(jù)模型:字典操作,lists, sets和字符串值

例子:Redis

優(yōu)點:不同于以前的任何數(shù)據(jù)庫

網(wǎng)格數(shù)據(jù)庫

源起:數(shù)據(jù)網(wǎng)格和元組空間研究。

數(shù)據(jù)模型:基于空間的架構(gòu)

例子:GigaSpaces, Coherence

優(yōu)點:適于事務(wù)處理的高性能和高擴展性

數(shù)據(jù)庫的問題:關(guān)系型數(shù)據(jù)庫與非關(guān)系型數(shù)據(jù)庫的區(qū)別,和各自的發(fā)展前景?

當(dāng)前主流的關(guān)系型數(shù)據(jù)庫有Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等。

非關(guān)系型數(shù)據(jù)庫有 NoSql、Cloudant。

nosql和關(guān)系型數(shù)據(jù)庫比較

優(yōu)點:

1)成本:nosql數(shù)據(jù)庫簡單易部署,基本都是開源軟件,不需要像使用oracle那樣花費大量成本購買使用,相比關(guān)系型數(shù)據(jù)庫價格便宜。

2)查詢速度:nosql數(shù)據(jù)庫將數(shù)據(jù)存儲于緩存之中,關(guān)系型數(shù)據(jù)庫將數(shù)據(jù)存儲在硬盤中,自然查詢速度遠(yuǎn)不及nosql數(shù)據(jù)庫。

3)存儲數(shù)據(jù)的格式:nosql的存儲格式是key,value形式、文檔形式、圖片形式等等,所以可以存儲基礎(chǔ)類型以及對象或者是集合等各種格式,而數(shù)據(jù)庫則只支持基礎(chǔ)類型。

4)擴展性:關(guān)系型數(shù)據(jù)庫有類似join這樣的多表查詢機制的限制導(dǎo)致擴展很艱難。

缺點:

1)維護(hù)的工具和資料有限,因為nosql是屬于新的技術(shù),不能和關(guān)系型數(shù)據(jù)庫10幾年的技術(shù)同日而語。

2)不提供對sql的支持,如果不支持sql這樣的工業(yè)標(biāo)準(zhǔn),將產(chǎn)生一定用戶的學(xué)習(xí)和使用成本。

3)不提供關(guān)系型數(shù)據(jù)庫對事物的處理。

關(guān)系型數(shù)據(jù)庫的最大特點就是事務(wù)的一致性:傳統(tǒng)的關(guān)系型數(shù)據(jù)庫讀寫操作都是事務(wù)的,具有ACID的特點,這個特性使得關(guān)系型數(shù)據(jù)庫可以用于幾乎所有對一致性有要求的系統(tǒng)中,如典型的銀行系統(tǒng)。

關(guān)系型數(shù)據(jù)庫為了維護(hù)一致性所付出的巨大代價就是其讀寫性能比較差,而像微博、facebook這類SNS的應(yīng)用,對并發(fā)讀寫能力要求極高,關(guān)系型數(shù)據(jù)庫已經(jīng)無法應(yīng)付(在讀方面,傳統(tǒng)上為了克服關(guān)系型數(shù)據(jù)庫缺陷,提高性能,都是增加一級memcache來靜態(tài)化網(wǎng)頁,而在SNS中,變化太快,memchache已經(jīng)無能為力了),因此,必須用新的一種數(shù)據(jù)結(jié)構(gòu)存儲來代替關(guān)系數(shù)據(jù)庫。

關(guān)系數(shù)據(jù)庫的另一個特點就是其具有固定的表結(jié)構(gòu),因此,其擴展性極差,而在SNS中,系統(tǒng)的升級,功能的增加,往往意味著數(shù)據(jù)結(jié)構(gòu)巨大變動,這一點關(guān)系型數(shù)據(jù)庫也難以應(yīng)付,需要新的結(jié)構(gòu)化數(shù)據(jù)存儲。

于是,非關(guān)系型數(shù)據(jù)庫應(yīng)運而生,由于不可能用一種數(shù)據(jù)結(jié)構(gòu)化存儲應(yīng)付所有的新的需求,因此,非關(guān)系型數(shù)據(jù)庫嚴(yán)格上不是一種數(shù)據(jù)庫,應(yīng)該是一種數(shù)據(jù)結(jié)構(gòu)化存儲方法的集合。

目前哪些NoSQL數(shù)據(jù)庫應(yīng)用廣泛,各有什么特點

特點:

它們可以處理超大量的數(shù)據(jù)。

它們運行在便宜的PC服務(wù)器集群上。

PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點:

易擴展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細(xì)粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

Gephi

它可以用來對信息進(jìn)行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進(jìn)行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商?!蹦壳?,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進(jìn)開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當(dāng)企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負(fù)載管理等眾多技術(shù)?!?/p>

Intel

和AWS類似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走。”

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。

AMPLab

通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜?,而這也正是AMPLab所做的。AMPLab致力于機器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進(jìn)對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學(xué)進(jìn)入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復(fù)雜的各種難題。

NoSQL發(fā)展前景如何

由于現(xiàn)在的網(wǎng)絡(luò)資源越來越多,所以非關(guān)系型的NoSQL需要也越來越大,我是比較看好NoSQL的,未來的NoSQL主要就是幾個方向,速度、分布式和命中算法


本文題目:nosql數(shù)據(jù)庫市場前景,nosql數(shù)據(jù)庫與關(guān)系型數(shù)據(jù)庫的區(qū)別
URL分享:http://weahome.cn/article/hosjsj.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部