這篇文章主要介紹了Python中Hook鉤子函數(shù)的使用方法,具有一定借鑒價(jià)值,需要的朋友可以參考下。希望大家閱讀完這篇文章后大有收獲。下面讓小編帶著大家一起了解一下。
成都創(chuàng)新互聯(lián)公司成立于2013年,是專業(yè)互聯(lián)網(wǎng)技術(shù)服務(wù)公司,擁有項(xiàng)目網(wǎng)站建設(shè)、成都網(wǎng)站制作網(wǎng)站策劃,項(xiàng)目實(shí)施與項(xiàng)目整合能力。我們以讓每一個(gè)夢(mèng)想脫穎而出為使命,1280元細(xì)河做網(wǎng)站,已為上家服務(wù),為細(xì)河各地企業(yè)和個(gè)人服務(wù),聯(lián)系電話:189820811081. 什么是Hook
經(jīng)常會(huì)聽(tīng)到鉤子函數(shù)(hook function)這個(gè)概念,最近在看目標(biāo)檢測(cè)開(kāi)源框架mmdetection,里面也出現(xiàn)大量Hook的編程方式,那到底什么是hook?hook的作用是什么?
what is hook ?鉤子hook,顧名思義,可以理解是一個(gè)掛鉤,作用是有需要的時(shí)候掛一個(gè)東西上去。具體的解釋是:鉤子函數(shù)是把我們自己實(shí)現(xiàn)的hook函數(shù)在某一時(shí)刻掛接到目標(biāo)掛載點(diǎn)上。
hook函數(shù)的作用 舉個(gè)例子,hook的概念在windows桌面軟件開(kāi)發(fā)很常見(jiàn),特別是各種事件觸發(fā)的機(jī)制; 比如C++的MFC程序中,要監(jiān)聽(tīng)鼠標(biāo)左鍵按下的時(shí)間,MFC提供了一個(gè)onLeftKeyDown的鉤子函數(shù)。很顯然,MFC框架并沒(méi)有為我們實(shí)現(xiàn)onLeftKeyDown具體的操作,只是為我們提供一個(gè)鉤子,當(dāng)我們需要處理的時(shí)候,只要去重寫(xiě)這個(gè)函數(shù),把我們需要操作掛載在這個(gè)鉤子里,如果我們不掛載,MFC事件觸發(fā)機(jī)制中執(zhí)行的就是空的操作。
從上面可知
hook函數(shù)是程序中預(yù)定義好的函數(shù),這個(gè)函數(shù)處于原有程序流程當(dāng)中(暴露一個(gè)鉤子出來(lái))
我們需要再在有流程中鉤子定義的函數(shù)塊中實(shí)現(xiàn)某個(gè)具體的細(xì)節(jié),需要把我們的實(shí)現(xiàn),掛接或者注冊(cè)(register)到鉤子里,使得hook函數(shù)對(duì)目標(biāo)可用
hook 是一種編程機(jī)制,和具體的語(yǔ)言沒(méi)有直接的關(guān)系
如果從設(shè)計(jì)模式上看,hook模式是模板方法的擴(kuò)展
鉤子只有注冊(cè)的時(shí)候,才會(huì)使用,所以原有程序的流程中,沒(méi)有注冊(cè)或掛載時(shí),執(zhí)行的是空(即沒(méi)有執(zhí)行任何操作)
本文用python來(lái)解釋hook的實(shí)現(xiàn)方式,并展示在開(kāi)源項(xiàng)目中hook的應(yīng)用案例。hook函數(shù)和我們常聽(tīng)到另外一個(gè)名稱:回調(diào)函數(shù)(callback function)功能是類似的,可以按照同種模式來(lái)理解。
據(jù)我所知,hook函數(shù)最常使用在某種流程處理當(dāng)中。這個(gè)流程往往有很多步驟。hook函數(shù)常常掛載在這些步驟中,為增加額外的一些操作,提供靈活性。
下面舉一個(gè)簡(jiǎn)單的例子,這個(gè)例子的目的是實(shí)現(xiàn)一個(gè)通用往隊(duì)列中插入內(nèi)容的功能。流程步驟有2個(gè)
需要再插入隊(duì)列前,對(duì)數(shù)據(jù)進(jìn)行篩選input_filter_fn
插入隊(duì)列insert_queue
class ContentStash(object): """ content stash for online operation pipeline is 1. input_filter: filter some contents, no use to user 2. insert_queue(redis or other broker): insert useful content to queue """ def __init__(self): self.input_filter_fn = None self.broker = [] def register_input_filter_hook(self, input_filter_fn): """ register input filter function, parameter is content dict Args: input_filter_fn: input filter function Returns: """ self.input_filter_fn = input_filter_fn def insert_queue(self, content): """ insert content to queue Args: content: dict Returns: """ self.broker.append(content) def input_pipeline(self, content, use=False): """ pipeline of input for content stash Args: use: is use, defaul False content: dict Returns: """ if not use: return # input filter if self.input_filter_fn: _filter = self.input_filter_fn(content) # insert to queue if not _filter: self.insert_queue(content) # test ## 實(shí)現(xiàn)一個(gè)你所需要的鉤子實(shí)現(xiàn):比如如果content 包含time就過(guò)濾掉,否則插入隊(duì)列 def input_filter_hook(content): """ test input filter hook Args: content: dict Returns: None or content """ if content.get('time') is None: return else: return content # 原有程序 content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}} content_stash = ContentStash('audit', work_dir='') # 掛上鉤子函數(shù), 可以有各種不同鉤子函數(shù)的實(shí)現(xiàn),但是要主要函數(shù)輸入輸出必須保持原有程序中一致,比如這里是content content_stash.register_input_filter_hook(input_filter_hook) # 執(zhí)行流程 content_stash.input_pipeline(content)
在深度學(xué)習(xí)訓(xùn)練流程中,hook函數(shù)體現(xiàn)的淋漓盡致。
一個(gè)訓(xùn)練過(guò)程(不包括數(shù)據(jù)準(zhǔn)備),會(huì)輪詢多次訓(xùn)練集,每次稱為一個(gè)epoch,每個(gè)epoch又分為多個(gè)batch來(lái)訓(xùn)練。流程先后拆解成:
開(kāi)始訓(xùn)練
訓(xùn)練一個(gè)epoch前
訓(xùn)練一個(gè)batch前
訓(xùn)練一個(gè)batch后
訓(xùn)練一個(gè)epoch后
評(píng)估驗(yàn)證集
結(jié)束訓(xùn)練
這些步驟是穿插在訓(xùn)練一個(gè)batch數(shù)據(jù)的過(guò)程中,這些可以理解成是鉤子函數(shù),我們可能需要在這些鉤子函數(shù)中實(shí)現(xiàn)一些定制化的東西,比如在訓(xùn)練一個(gè)epoch后
我們要保存下訓(xùn)練的模型,在結(jié)束訓(xùn)練
時(shí)用好的模型執(zhí)行下測(cè)試集的效果等等。
keras中是通過(guò)各種回調(diào)函數(shù)來(lái)實(shí)現(xiàn)鉤子hook功能的。這里放一個(gè)callback的父類,定制時(shí)只要繼承這個(gè)父類,實(shí)現(xiàn)你過(guò)關(guān)注的鉤子就可以了。
@keras_export('keras.callbacks.Callback') class Callback(object): """Abstract base class used to build new callbacks. Attributes: params: Dict. Training parameters (eg. verbosity, batch size, number of epochs...). model: Instance of `keras.models.Model`. Reference of the model being trained. The `logs` dictionary that callback methods take as argument will contain keys for quantities relevant to the current batch or epoch (see method-specific docstrings). """ def __init__(self): self.validation_data = None # pylint: disable=g-missing-from-attributes self.model = None # Whether this Callback should only run on the chief worker in a # Multi-Worker setting. # TODO(omalleyt): Make this attr public once solution is stable. self._chief_worker_only = None self._supports_tf_logs = False def set_params(self, params): self.params = params def set_model(self, model): self.model = model @doc_controls.for_subclass_implementers @generic_utils.default def on_batch_begin(self, batch, logs=None): """A backwards compatibility alias for `on_train_batch_begin`.""" @doc_controls.for_subclass_implementers @generic_utils.default def on_batch_end(self, batch, logs=None): """A backwards compatibility alias for `on_train_batch_end`.""" @doc_controls.for_subclass_implementers def on_epoch_begin(self, epoch, logs=None): """Called at the start of an epoch. Subclasses should override for any actions to run. This function should only be called during TRAIN mode. Arguments: epoch: Integer, index of epoch. logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_epoch_end(self, epoch, logs=None): """Called at the end of an epoch. Subclasses should override for any actions to run. This function should only be called during TRAIN mode. Arguments: epoch: Integer, index of epoch. logs: Dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with `val_`. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_train_batch_begin(self, batch, logs=None): """Called at the beginning of a training batch in `fit` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict, contains the return value of `model.train_step`. Typically, the values of the `Model`'s metrics are returned. Example: `{'loss': 0.2, 'accuracy': 0.7}`. """ # For backwards compatibility. self.on_batch_begin(batch, logs=logs) @doc_controls.for_subclass_implementers @generic_utils.default def on_train_batch_end(self, batch, logs=None): """Called at the end of a training batch in `fit` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict. Aggregated metric results up until this batch. """ # For backwards compatibility. self.on_batch_end(batch, logs=logs) @doc_controls.for_subclass_implementers @generic_utils.default def on_test_batch_begin(self, batch, logs=None): """Called at the beginning of a batch in `evaluate` methods. Also called at the beginning of a validation batch in the `fit` methods, if validation data is provided. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict, contains the return value of `model.test_step`. Typically, the values of the `Model`'s metrics are returned. Example: `{'loss': 0.2, 'accuracy': 0.7}`. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_test_batch_end(self, batch, logs=None): """Called at the end of a batch in `evaluate` methods. Also called at the end of a validation batch in the `fit` methods, if validation data is provided. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict. Aggregated metric results up until this batch. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_predict_batch_begin(self, batch, logs=None): """Called at the beginning of a batch in `predict` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict, contains the return value of `model.predict_step`, it typically returns a dict with a key 'outputs' containing the model's outputs. """ @doc_controls.for_subclass_implementers @generic_utils.default def on_predict_batch_end(self, batch, logs=None): """Called at the end of a batch in `predict` methods. Subclasses should override for any actions to run. Arguments: batch: Integer, index of batch within the current epoch. logs: Dict. Aggregated metric results up until this batch. """ @doc_controls.for_subclass_implementers def on_train_begin(self, logs=None): """Called at the beginning of training. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_train_end(self, logs=None): """Called at the end of training. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently the output of the last call to `on_epoch_end()` is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_test_begin(self, logs=None): """Called at the beginning of evaluation or validation. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_test_end(self, logs=None): """Called at the end of evaluation or validation. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently the output of the last call to `on_test_batch_end()` is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_predict_begin(self, logs=None): """Called at the beginning of prediction. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ @doc_controls.for_subclass_implementers def on_predict_end(self, logs=None): """Called at the end of prediction. Subclasses should override for any actions to run. Arguments: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future. """ def _implements_train_batch_hooks(self): """Determines if this Callback should be called for each train batch.""" return (not generic_utils.is_default(self.on_batch_begin) or not generic_utils.is_default(self.on_batch_end) or not generic_utils.is_default(self.on_train_batch_begin) or not generic_utils.is_default(self.on_train_batch_end))
這些鉤子的原始程序是在模型訓(xùn)練流程中的
keras源碼位置: tensorflow\python\keras\engine\training.py
部分摘錄如下(## I am hook):
# Container that configures and calls `tf.keras.Callback`s. if not isinstance(callbacks, callbacks_module.CallbackList): callbacks = callbacks_module.CallbackList( callbacks, add_history=True, add_progbar=verbose != 0, model=self, verbose=verbose, epochs=epochs, steps=data_handler.inferred_steps) ## I am hook callbacks.on_train_begin() training_logs = None # Handle fault-tolerance for multi-worker. # TODO(omalleyt): Fix the ordering issues that mean this has to # happen after `callbacks.on_train_begin`. data_handler._initial_epoch = ( # pylint: disable=protected-access self._maybe_load_initial_epoch_from_ckpt(initial_epoch)) for epoch, iterator in data_handler.enumerate_epochs(): self.reset_metrics() callbacks.on_epoch_begin(epoch) with data_handler.catch_stop_iteration(): for step in data_handler.steps(): with trace.Trace( 'TraceContext', graph_type='train', epoch_num=epoch, step_num=step, batch_size=batch_size): ## I am hook callbacks.on_train_batch_begin(step) tmp_logs = train_function(iterator) if data_handler.should_sync: context.async_wait() logs = tmp_logs # No error, now safe to assign to logs. end_step = step + data_handler.step_increment callbacks.on_train_batch_end(end_step, logs) epoch_logs = copy.copy(logs) # Run validation. ## I am hook callbacks.on_epoch_end(epoch, epoch_logs)
mmdetection是一個(gè)目標(biāo)檢測(cè)的開(kāi)源框架,集成了許多不同的目標(biāo)檢測(cè)深度學(xué)習(xí)算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露給應(yīng)用實(shí)現(xiàn)流程中具體部分。
詳見(jiàn)https://github.com/open-mmlab/mmdetection
這里看一個(gè)訓(xùn)練的調(diào)用例子(摘錄)(https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py
)
def train_detector(model, dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): logger = get_root_logger(cfg.log_level) # prepare data loaders # put model on gpus # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = EpochBasedRunner( model, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta) # an ugly workaround to make .log and .log.json filenames the same runner.timestamp = timestamp # fp16 setting # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None)) if distributed: runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: # Support batch_size > 1 in validation eval_cfg = cfg.get('evaluation', {}) eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) # user-defined hooks if cfg.get('custom_hooks', None): custom_hooks = cfg.custom_hooks assert isinstance(custom_hooks, list), \ f'custom_hooks expect list type, but got {type(custom_hooks)}' for hook_cfg in cfg.custom_hooks: assert isinstance(hook_cfg, dict), \ 'Each item in custom_hooks expects dict type, but got ' \ f'{type(hook_cfg)}' hook_cfg = hook_cfg.copy() priority = hook_cfg.pop('priority', 'NORMAL') hook = build_from_cfg(hook_cfg, HOOKS) runner.register_hook(hook, priority=priority)
感謝你能夠認(rèn)真閱讀完這篇文章,希望小編分享Python中Hook鉤子函數(shù)的使用方法內(nèi)容對(duì)大家有幫助,同時(shí)也希望大家多多支持創(chuàng)新互聯(lián)網(wǎng)站建設(shè)公司,,關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,遇到問(wèn)題就找創(chuàng)新互聯(lián)網(wǎng)站建設(shè)公司,,詳細(xì)的解決方法等著你來(lái)學(xué)習(xí)!