Go是一個圖靈完備的語言
目前成都創(chuàng)新互聯(lián)公司已為1000多家的企業(yè)提供了網(wǎng)站建設(shè)、域名、虛擬空間、網(wǎng)站改版維護、企業(yè)網(wǎng)站設(shè)計、武城網(wǎng)站維護等服務(wù),公司將堅持客戶導(dǎo)向、應(yīng)用為本的策略,正道將秉承"和諧、參與、激情"的文化,與客戶和合作伙伴齊心協(xié)力一起成長,共同發(fā)展。
任何圖靈完備的語言理論上都可以用來編譯自身。比如c/c++, java, vb, php等等都可以。
至于怎么編譯自身的:
用其它語言比如c++實現(xiàn)一個[Go語言編譯器-1]
用Go語言寫一個[Go語言編譯器-2]
用這個c++實現(xiàn)的[Go語言編譯器-1]編譯第2步里面說的Go語言寫的[Go語言編譯器-2]
用第3步得到的[Go語言編譯器-2],再編譯一次第2步里面說的[Go語言編譯器-2]的源碼。
OK,現(xiàn)在有一個Go語言實現(xiàn)的編譯器了,最開始那個c++寫的編譯器沒用了,可以扔掉不要了。以后就不停的優(yōu)化使用這個Go語言實現(xiàn)的自身的編譯器就行了。
const修飾的數(shù)據(jù)類型是指常類型,常類型的變量或?qū)ο蟮闹凳遣荒鼙桓碌?。const關(guān)鍵字的作用主要有以下幾點:(1)可以定義const常量,具有不可變性。例如:constintMax=100;intArray[Max];(2)便于進行類型檢查,使編譯器對處理內(nèi)容有了解,消除了一些隱患。例如:voidf(constinti){}編譯器就會知道i是一個常量,不允許修改;(3)可以避免意義模糊的數(shù)字出現(xiàn),同樣可以很方便地進行參數(shù)的調(diào)整和修改。(4)可以保護被修飾的東西,防止意外的修改,增強程序的健壯性。還是上面的例子,如果在函數(shù)體內(nèi)修改了i,編譯器就會報錯;例如:voidf(constinti){i=10;//error!}(5)為函數(shù)重載提供了一個參考。classA{voidf(inti){}//一個函數(shù)voidf(inti)const{}//上一個函數(shù)的重載};(6)可以節(jié)省空間,避免不必要的內(nèi)存分配。例如:#definePI3.14159//常量宏constdoulbePi=3.14159;//此時并未將Pi放入ROM中doublei=Pi;//此時為Pi分配內(nèi)存,以后不再分配!doubleI=PI;//編譯期間進行宏替換,分配內(nèi)存doublej=Pi;//沒有內(nèi)存分配doubleJ=PI;//再進行宏替換,又一次分配內(nèi)存!const定義常量從匯編的角度來看,只是給出了對應(yīng)的內(nèi)存地址,而不是象#define一樣給出的是立即數(shù),所以,const定義的常量在程序運行過程中只有一份拷貝,而#define定義的常量在內(nèi)存中有若干個拷貝。(7)提高了效率。編譯器通常不為普通const常量分配存儲空間,而是將它們保存在符號表中,這使得它成為一個編譯期間的常量,沒有了存儲與讀內(nèi)存的操作,使得它的效率也很高。
Go 由于不支持泛型而臭名昭著,但最近,泛型已接近成為現(xiàn)實。Go 團隊實施了一個看起來比較穩(wěn)定的設(shè)計草案,并且正以源到源翻譯器原型的形式獲得關(guān)注。本文講述的是泛型的最新設(shè)計,以及如何自己嘗試泛型。
例子
FIFO Stack
假設(shè)你要創(chuàng)建一個先進先出堆棧。沒有泛型,你可能會這樣實現(xiàn):
type?Stack?[]interface{}func?(s?Stack)?Peek()?interface{}?{
return?s[len(s)-1]
}
func?(s?*Stack)?Pop()?{
*s?=?(*s)[:
len(*s)-1]
}
func?(s?*Stack)?Push(value?interface{})?{
*s?=?
append(*s,?value)
}
但是,這里存在一個問題:每當你 Peek 項時,都必須使用類型斷言將其從 interface{} 轉(zhuǎn)換為你需要的類型。如果你的堆棧是 *MyObject 的堆棧,則意味著很多 s.Peek().(*MyObject)這樣的代碼。這不僅讓人眼花繚亂,而且還可能引發(fā)錯誤。比如忘記 * 怎么辦?或者如果您輸入錯誤的類型怎么辦?s.Push(MyObject{})` 可以順利編譯,而且你可能不會發(fā)現(xiàn)到自己的錯誤,直到它影響到你的整個服務(wù)為止。
通常,使用 interface{} 是相對危險的。使用更多受限制的類型總是更安全,因為可以在編譯時而不是運行時發(fā)現(xiàn)問題。
泛型通過允許類型具有類型參數(shù)來解決此問題:
type?Stack(type?T)?[]Tfunc?(s?Stack(T))?Peek()?T?{
return?s[len(s)-1]
}
func?(s?*Stack(T))?Pop()?{
*s?=?(*s)[:
len(*s)-1]
}
func?(s?*Stack(T))?Push(value?T)?{
*s?=?
append(*s,?value)
}
這會向 Stack 添加一個類型參數(shù),從而完全不需要 interface{}?,F(xiàn)在,當你使用 Peek() 時,返回的值已經(jīng)是原始類型,并且沒有機會返回錯誤的值類型。這種方式更安全,更容易使用。(譯注:就是看起來更丑陋,^-^)
此外,泛型代碼通常更易于編譯器優(yōu)化,從而獲得更好的性能(以二進制大小為代價)。如果我們對上面的非泛型代碼和泛型代碼進行基準測試,我們可以看到區(qū)別:
type?MyObject?struct?{
X?
int
}
var?sink?MyObjectfunc?BenchmarkGo1(b?*testing.B)?{
for?i?:=?0;?i??b.N;?i++?{
var?s?Stack
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink?=?s.Peek().(MyObject)
}
}
func?BenchmarkGo2(b?*testing.B)?{
for?i?:=?0;?i??b.N;?i++?{
var?s?Stack(MyObject)
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink?=?s.Peek()
}
}
結(jié)果:
BenchmarkGo1BenchmarkGo1-16?????12837528?????????87.0?ns/op???????48?B/op????????2?allocs/opBenchmarkGo2BenchmarkGo2-16?????28406479?????????41.9?ns/op???????24?B/op????????2?allocs/op
在這種情況下,我們分配更少的內(nèi)存,同時泛型的速度是非泛型的兩倍。
合約(Contracts)
上面的堆棧示例適用于任何類型。但是,在許多情況下,你需要編寫僅適用于具有某些特征的類型的代碼。例如,你可能希望堆棧要求類型實現(xiàn) String() 函數(shù)
按值傳遞函數(shù)參數(shù),是拷貝參數(shù)的實際值到函數(shù)的形式參數(shù)的方法調(diào)用。在這種情況下,參數(shù)在函數(shù)內(nèi)變化對參數(shù)不會有影響。
默認情況下,Go編程語言使用調(diào)用通過值的方法來傳遞參數(shù)。在一般情況下,這意味著,在函數(shù)內(nèi)碼不能改變用來調(diào)用所述函數(shù)的參數(shù)??紤]函數(shù)swap()的定義如下。
代碼如下:
/* function definition to swap the values */
func swap(int x, int y) int {
var temp int
temp = x /* save the value of x */
x = y /* put y into x */
y = temp /* put temp into y */
return temp;
}
現(xiàn)在,讓我們通過使實際值作為在以下示例調(diào)用函數(shù)swap():
代碼如下:
package main
import "fmt"
func main() {
/* local variable definition */
var a int = 100
var b int = 200
fmt.Printf("Before swap, value of a : %d\n", a )
fmt.Printf("Before swap, value of b : %d\n", b )
/* calling a function to swap the values */
swap(a, b)
fmt.Printf("After swap, value of a : %d\n", a )
fmt.Printf("After swap, value of b : %d\n", b )
}
func swap(x, y int) int {
var temp int
temp = x /* save the value of x */
x = y /* put y into x */
y = temp /* put temp into y */
return temp;
}
讓我們把上面的代碼放在一個C文件,編譯并執(zhí)行它,它會產(chǎn)生以下結(jié)果:
Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :100
After swap, value of b :200
這表明,參數(shù)值沒有被改變,雖然它們已經(jīng)在函數(shù)內(nèi)部改變。
通過傳遞函數(shù)參數(shù),即是拷貝參數(shù)的地址到形式參數(shù)的參考方法調(diào)用。在函數(shù)內(nèi)部,地址是訪問調(diào)用中使用的實際參數(shù)。這意味著,對參數(shù)的更改會影響傳遞的參數(shù)。
要通過引用傳遞的值,參數(shù)的指針被傳遞給函數(shù)就像任何其他的值。所以,相應(yīng)的,需要聲明函數(shù)的參數(shù)為指針類型如下面的函數(shù)swap(),它的交換兩個整型變量的值指向它的參數(shù)。
代碼如下:
/* function definition to swap the values */
func swap(x *int, y *int) {
var temp int
temp = *x /* save the value at address x */
*x = *y /* put y into x */
*y = temp /* put temp into y */
}
現(xiàn)在,讓我們調(diào)用函數(shù)swap()通過引用作為在下面的示例中傳遞數(shù)值:
代碼如下:
package main
import "fmt"
func main() {
/* local variable definition */
var a int = 100
var b int= 200
fmt.Printf("Before swap, value of a : %d\n", a )
fmt.Printf("Before swap, value of b : %d\n", b )
/* calling a function to swap the values.
* a indicates pointer to a ie. address of variable a and
* b indicates pointer to b ie. address of variable b.
*/
swap(a, b)
fmt.Printf("After swap, value of a : %d\n", a )
fmt.Printf("After swap, value of b : %d\n", b )
}
func swap(x *int, y *int) {
var temp int
temp = *x /* save the value at address x */
*x = *y /* put y into x */
*y = temp /* put temp into y */
}
讓我們把上面的代碼放在一個C文件,編譯并執(zhí)行它,它會產(chǎn)生以下結(jié)果:
Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :200
After swap, value of b :100
這表明變化的功能以及不同于通過值調(diào)用的外部體現(xiàn)的改變不能反映函數(shù)之外。